Skip to main content

AER 821

Spacecraft Attitude Dynamics and Control

Review of rotational dynamics: Euler's equations, major/minor axis spins, asymptotic stability, role of energy dissipation, integrals of motion. Space-Vehicle Attitude Dynamics: rigid-body motion, typical configurations (non-spinning, spinning, momentum-bias), applications. Applied Classical Control: Discrete-time control systems, real-time considerations, bandwidth, sampling, other practical considerations. Basics of Modern Control Theory: State-space formulations, LQR/LQG controllers, comparison to classical methods. Space-Vehicle Attitude Control: Typical sensor and actuator devices, strategies for attitude control, gravity gradient control, effects of flexibility.
Weekly Contact: Lab:1 hr. Lecture:3 hrs.
GPA Weight: 1.00
Course Count: 1.00
Billing Units: 1

Prerequisites

AER 509 and (AER 716 or AER 721)

Antirequisites

None

Co-Requisites

None

Custom Requisites

None

Mentioned in the Following Calendar Pages

*List may not include courses that are on a common table shared between programs.

Aerospace