
CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

A Constant Time Algorithm for Solving Simple Rolling Cube Mazes

Randal Tuggle∗ Davis Murphy† Nicholas Lorch‡

Abstract

In a rolling cube maze, a cube is placed on a board and
the task is to roll it to a desired final space. Many vari-
ations of this puzzle exist. In this paper, we establish
formal notation regarding rolling cube mazes and solve
a simple variant: find a shortest path that puts a desired
label on top at the final space. Utilizing several sym-
metries and reductions, we then produce a description
of the solution path in constant time. This provides a
framework for future researchers to develop algorithms
to efficiently solve more complex mazes.

1 Introduction

Rolling cube puzzles were first popularized by Martin
Gardner [3]. They consist of a labelled cube on a board
with some task in mind. Mathematician Robert Ab-
bott built on this to create a “Rolling Cube Maze”,
which considers an initial space and a final space, and
asks to find a path to the final space. Rolling Cube
Mazes have many variations, two of which are shown in
Figure 1. In the left image, every space is labelled and
a condition is applied such that when the cube lands
on that space, the space’s label must be face up before
flipping onto that space (the spaces with asterisk mean
any label is allowed). In the right image, there are no
labelled spaces, but instead an initial and final space for
the cube to start and end on respectively.

Figure 1: Example Rolling Cube Mazes (Images from
Buchin et al. [2])

∗Department of Computer Science, University of North Car-
olina at Chapel Hill, rtuggle99@gmail.com

†Department of Mathematics, Berry College,
dkmurphy@outlook.com

‡Department of Statistics, University of Georgia,
lorchnd@gmail.com

The rolling cube mazes we consider in this paper have
a labelled final space and no blocked spaces. The aim
is to find a sequence of moves that takes a cube from
an initial position (xi, yi) to a final position (xf , yf) in
the fewest moves such that the cube visits (xf , yf) only
on the final move and the desired label ℓ ends on top.
An important distinction to note is that in our problem,
the final label must be face up after flipping onto the
final space, not before.

In Section 2, we define notation. In Section 3, we
present four techniques that allow us to greatly sim-
plify the problem. In Section 4, we describe solutions
for (xi, yi) and (xf , yf) that are sufficiently far apart.
In Section 5, we describe solutions for all other (xi, yi)
and (xf , yf). Finally, in Section 6, we prove that the
complexity of our algorithm is O(1). We can formally
define the problem as follows:

Problem: Simplified Rolling Cube (SRC).
Instance: board height m, board width n,
initial space (xi, yi), final space (xf , yf), and
desired final label ℓ, with the assumption that
the cube starts in the standard orientation de-
scribed in Section 2.1.
Solution: A string description of moves that
takes the cube from initial space (xi, yi) to final
space (xf , yf) with desired label ℓ on top in the
fewest moves without crossing over (xf , yf), or
False if there is no solution.

2 Notation

2.1 Describing Faces and Assigning Labels

First, we name the faces of our cube according to the
net provided. We define the North face to be the face
that points North, the East face to be the face that
points East, and so on. Then we define the Top face
and Bottom face to be the face pointing away from and
touching the board respectively. We assign labels to
the starting faces of our cube according to the labeling
of a standard right-handed die and, without loss of
generality, create a standard starting orientation,
pictured in Figure 2:

34th Canadian Conference on Computational Geometry, 2022

Bottom
face

South
face

Top
face

West
face

East
face

North
face

6

3

1

2 5

4

Figure 2: Face descriptions and starting labels

2.2 Describing Moves and Paths

We define North (N), South (S), East (E), and West
(W) moves as flipping the cube onto the space immedi-
ately north/south/east/west of the cube’s current posi-
tion respectively. We also define an identity (I) move
which leaves the cube in its current orientation and po-
sition. We represent a sequence of moves from one space
to another as a Generalized Path String, or GPS. We
can use the following grammar rules to define a GPS
with Z being the start symbol

Z → (M){EXP}Z |MZ | ϵ
M →MM | I | N | E | S |W

EXP→ ∆+D | ∆−D | D
∆→ ∆x | ∆y

D → DD | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We define ∆x = |xf − xi| and ∆y = |yf − yi|. When
we return the string, however, the string contains the
literal characters “∆x” and “∆y” rather than the num-
bers they represent. We do this because ∆x and ∆y

can be arbitrarily large, and we want the length of the
string to be bounded by a constant. ∆ is either ∆x

or ∆y. EXP is an expression of the form ∆ plus or
minus some D ∈ N (our algorithm never uses D > 4).
EXP evaluates to some number d ∈ N. M is simply
any sequence of the five basic moves described above.
When we have (M){EXP}, we take this to mean that
we perform the moves M in parentheses consecutively
d times.

1

3

4

25
4

3

2 5 11

1

1

→←
↑

↓

N

S

EW
I

1

↑
3 → 2

↑
6 → 4

↓
2

↓
3←6

Figure 3: The moves N, E, S, W, I, and the path ‘NE-
NESSW’ visualized

3 Simplifying the Problem

In this section, we introduce several techniques and a
partitioning that together simplify our problem signifi-
cantly. The first technique is “face-saving” which allows
us to keep track of our desired final top label over arbi-
trarily long distances. The second technique is “Quad-
rant Mapping” which allows us to assume that xf ≥ xi

and yf ≥ yi. The third technique is a series of reduc-
tions which allows us to focus only on solving for ℓ = 1
or ℓ = 6. Following these techniques, we partition the
displacements into two sets, large and small, which we
handle differently.

3.1 Face Saving

In later proofs, we utilize the technique of “saving” the
desired final top label onto one of the two faces that are
unchanged by moving only along a single axis. This al-
lows us to move the cube an arbitrary number of moves
in either direction along that axis and still know exactly
the face on which the desired final label is saved.

Definition 1 A label ℓ is said to be saved with re-
spect to an axis A if and only if moving along A keeps
label ℓ on the same face.

1
3

2 5

4 →
2
3

6 1

4 →
6
3

5 2

4 →
5
3

1 6

4 →
1
3

2 5

4 →
. . .
→

?
3

4

↓
4

↑
3

Figure 4: Saving 4 on the North face with respect to
the E-W axis

3.2 Quadrant Mapping

We say (xf , yf) is in quadrant 1 if xf ≥ xi and yf ≥ yi,
in quadrant 2 if xf < xi and yf ≥ yi, in quadrant 3 if
xf < xi and yf < yi, and in quadrant 4 if xf ≥ xi and
yf < yi.

Q3 Q4

Q2 Q1

1

Figure 5: Quadrants

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

We can perform reflections to create a (x′
f , y

′
f) and ℓ′

that fall in quadrant 1 via the following steps:

• Step 1: start at (xi, yi) in the standard orienta-
tion and show (xf , yf) with desired label ℓ where
(xf , yf) is

• Step 2: reflect the board across N-S axis if (xf , yf)
began in Q3 or Q4

• Step 3: reflect the board across E-W axis if (xf , yf)
began in Q3 or Q2

• Step 4: relabel cube to be in standard orientation
and find ℓ′ corresponding to the new labeling.

As seen in the pseudo code for mapToQuad1 in the
appendix, we can define a tuple q = (xi < xf , yi < yf)
in which the first or second element of q is true if we are
reflecting over the N-S or E-W axis respectively. After
we generate our GPS, we can switch the E’s with W’s
and N’s with S’s as needed to find an analogous path
for the original quadrant. This conversion can be seen
in the pseudo code for convGPS in the appendix.

3.3 Reductions

We can reduce the number of cases by noting certain
symmetries. First, any path to (xf , yf) ending on ℓ = 2
on an m × n board is analogous to a path to (yf , xf)
ending on ℓ = 3 on an n×m via swapping N ′s with E′s
and S′s with W ′s. The ℓ = 4 and ℓ = 5 cases share the
same symmetry. The pseudo code for handling labels
2 and 5 is shown in the appendix. In the remainder of
this section, we reduce the ℓ = 3, 4 cases to either the
ℓ = 1 or ℓ = 6 case.

Lemma 1 Let ℓ = 3, 4. For any GPS G that places ℓ
on top in k moves, there exists a GPS that begins with
(E){i}N or (E){i}S or (W){i}N or (W){i}S for some
i ∈ {0, 1, 2, 3} that also places ℓ on top at (xf , yf) in k
moves.

The idea for the reduction is that if there is some
GPS G that places ℓ on top at (xf , yf), then there exists
some GPS that begins with i ∈ {0, 1, 2, 3} E or W moves
followed by a N or S move that places ℓ on the top or
bottom at some (xr, yr) and places ℓ on top at (xf , yf)
in the same amount of moves as G.

Theorem 2 The ℓ = 3 and ℓ = 4 cases can reduce to
the ℓ = 1, 6 cases in constant time

3.4 Displacement Types

For ease of analyzing displacements, we denote the dis-
placements before the reduction to ℓ = 1 or ℓ = 6 as ∆x

and ∆y and the displacements after the reduction as ∆′
x

and ∆′
y. That is, ∆x = ∆′

x + δx and ∆y = ∆′
y + δy for

some natural numbers δx, δy. Furthermore, we define
(xr, yr) to be the initial space after the reduction.

We denote the bottom left square of the m×n boards
as (1, 1). Note that if we ignore ending labels, going
from (xr, yr) to (xf , yf) takes at least |xr−xf |+|yr−yf |,
or (∆′

x +∆′
y), moves. Unfortunately, finding a path to

(xf , yf) with label ℓ on top in (∆′
x +∆′

y) moves is not
always possible.

For ℓ = 1, 6, we define threshold values ∆row,∆col for
∆′

y,∆
′
x in Table 1 to separate our problem into cases

requiring different GPS templates. Note that there are
two sets of threshold values for ℓ = 6. This is because
we define two possible paths for ℓ = 6 in Section 4, one
starting with a N move and one starting with an E.

ℓ
of rows apart # of cols apart

(∆row) (∆col)

1 2 2
6N 4 2
6E 2 4

Table 1: Threshold values for displacement categories

We can now define the large displacements (Section
4) to be the cases where ∆′

y ≥ ∆row and ∆′
x ≥ ∆col and

small displacements to be all remaining cases.

4 Large displacements

To begin, we list the shortest string of moves required
to get ℓ = 1, 6 saved on either the North or East face:

ℓ Prefixes Face ℓ is on

1 N or E North or East
6 EEN or NNE North or East

Table 2: Prefixes to use for ℓ = 1, 6

Once ℓ is saved on either the North face or the East
face on some space, we can follow one of the paths de-
picted in the figure below:

?
ℓ ℓ
→

ℓ
. . .→ ?

?

→

↑

→
?

↑

↑

ℓ

ℓ
...

?ℓ ℓ

? ℓ

ℓ

↑
ℓ

...

↑
? ?

↑
?
ℓ ↑→

→ →
ℓ

. . .

ℓ

?

ℓ

Figure 6: Large-displacement method once ℓ is saved on
the North face (left) or East face (right)

34th Canadian Conference on Computational Geometry, 2022

Then, to generate a GPS, we can apply the aforemen-
tioned prefix to the path found from this face saving
process. Doing this, we can describe the solutions for
large displacements:

ℓ Generalized Path Strings

1 N (E){∆′
x − 2}NE(N){∆′

y − 2}E
6N NNE (N){∆′

y − 4}EN(E){∆′
x − 2}N

6E EEN (E){∆′
x − 4}NE(N){∆′

y − 2}E

Table 3: Large Displacement GPS’s

An important observation is that the number of
moves in these GPS’s is always ∆′

x + ∆′
y. Thus, these

GPS’s use the fewest moves to get from (xr, yr) to
(xf , yf) with ℓ on top.

5 Small Displacements

When dealing with large displacements we did not need
to worry about potentially rolling off the board or us-
ing a GPS that contains a value such as ∆′

x − 2 which
may now be negative. Thus, we must come up with
a different way to find solutions when ∆′

x < ∆col or
∆′

y < ∆row.

5.1 Breadth First Search Approach

One possible approach is to check all possible paths to
(xf , yf) using a brute force algorithm and pick the short-
est one. Using this approach, it would be impossible to
find solutions in O(1) time since since the complexity
depends on m and n. So we do not use this approach
in our actual algorithm. However, we use this approach
to prove that some of our results are in fact solutions
of fewest moves. In order to brute force all paths, we
create a graph with one vertex for each possible position
and orientation combination, or state [2], of a cube on
a given board. Edges are between two vertices if their
corresponding states are one N, E, S, or W move apart.

5.2 Systematic Approach

We begin our systematic approach by proving the fol-
lowing Theorem.

Theorem 3 Assume there exists a GPS that begins at
(xi, yi) on an m× n board and places ℓ on top at (xi +
∆x, yi + ∆y) in ∆x + ∆y + 2k moves for some k ∈ N.
Then for all (xc, yc) such that xc ≥ k and yc ≥ k on any
board large enough to allow (xc, yc) and (xc +∆x, yc +
∆y) to exist, all GPS’s from (xc, yc) to (xc+∆x, yc+∆y)
that place ℓ on top in the fewest moves are contained
within an (∆y +2k)× (∆x +2k) rectangle such that the
bottom left corner of this rectangle is (xc−k, yc−k) and
the upper right corner is (xc +∆x + k, yc +∆y + k).

The idea with Theorem 3 is that once we have a GPS
for a given ∆′

x and ∆′
y, we can get an upper bound for

the size of boards we need to check in order to find a
GPS of fewest moves for the given ∆′

x and ∆′
y regardless

of board size.

5.2.1 Symmetry

Because ℓ = 1, 6 begins on the top and bottom faces
respectively, any path to (xf , yf) with ∆′

y > ∆′
x is anal-

ogous to a path to (yf , xf) with ∆′
x > ∆′

y, just by swap-
ping Ns with Es and Ss with Ws. Therefore, for the
following cases, we assume ∆′

x ≥ ∆′
y.

→ → →
↑
→

↑

↑

↑
→
↑

1

3

6

4 2

1

2 6 5

3 1

→ → →
↑
→
↑

↑

↑

↑

↑
→
↑
→ →

1

3

6

4 2

1 3 6

2 6 5

3 1

2

6

Figure 7: ℓ = 1 (left) and ℓ = 6 (right) GPS symmetry
about diagonal

We now handle the ℓ = 1, 6 small displacement cases.
We begin by defining the function χ such that χ(ℓ) is the
number of E moves required to place ℓ on top from the
starting orientation. For ℓ = 1, 6 we find that χ(1) = 0
and χ(6) = 2. These are the main cases we use for small
displacements:

1. ∆′
x = 0 and ∆′

y = 0

2. ∆′
x ≡4 χ(ℓ)

3. ∆′
y = 0

4. ∆′
y = 1

5. ∆′
y = 2

6. ∆′
y = 3

To handle the small displacement cases we go through
the above enumeration in order, handling a case only if
the previous case has not been met.

5.2.2 ∆′
x = 0 and ∆′

y = 0

When ℓ = 1, return I. Our formal statement of SRC
allows the cube to be on the final space only when the
correct label is on the top face, so return False when
ℓ = 6.

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

5.2.3 ∆′
x ≡4 χ(ℓ)

By the definition of χ, using 4k + χ(ℓ) for all k ∈ Z
consecutive E moves places ℓ on top when our cube is in
starting orientation. Thus, when ∆′

x ≡4 χ(ℓ), a solution
can be obtained by rolling to (xf −1, 1) to save ℓ on the
West face, then performing ∆′

y N moves, and finally
placing ℓ on top via an E move as shown in Figure 8.

... 1 → 2 → 6→ 51

↑
...

↑
51 → 1

... 1→ 26

↑
...

↑
2 →6 6

Figure 8: ℓ = 1 (left) and ℓ = 6 (right) when ∆′
x ≡4 χ(ℓ)

5.2.4 ∆′
y = 0

Theorem 4 All paths from (xi, yi) to (xf , yf) require
∆x +∆y + 2k moves for some k ∈ N.

Theorem 5 When m > 1, ∆′
y = 0, ∆′

x > χ(ℓ), and
∆′

x ̸≡4 χ(ℓ), the shortest path from (xr, yr) to (xf , yf)
with final label ℓ = 1, 6 is exactly ∆′

x +∆′
y + 2 moves.

It follows that when ℓ = 1, going either N or S then E
as far as needed and then finally S or N, we get a GPS
of fewest moves. We can also do something similar for
ℓ = 6 as shown in Figure 9:

1
↑
3
1
→. . .→→ ?

1

↓
1

1
↓
4
1
→. . .→ ?

1

↑
1

1
↑
3 →. . .→ ?

↓
1 → ? → 6

1
↓
4 →. . .→ ?

↑
1 → ? → 6

Figure 9: ℓ = 1 (top) and ℓ = 6 (bottom) when m > 1,
∆′

x ̸≡4 χ(l) and ∆′
y = 0

When ℓ = 6 there is not room to do this when ∆′
x = 1.

Using the brute force algorithm, we checked on boards
up to size 7 × 8 and found that the GPS’s listed in
small1case4 and small6case4 in the appendix were the
shortest paths that place ℓ on top at (xf , yf). We know
by Theorem 3 that these are the shortest paths.

5.2.5 ∆′
y = 1

Theorem 6 For the ℓ = 1, 6 small displacement case,
when ∆′

y = 1, ∆′
x > 1 and ∆′

x ̸≡4 χ(ℓ), there is no path
that places ℓ on top at (xf , yf) in ∆′

x +∆′
y moves.

Notice that the paths in Figure 10 place ℓ on top in
∆′

x + ∆′
y + 2 moves. Therefore, by Theorem 6, these

GPS’s are the shortest paths that place ℓ on top at
(xf , yf) for ℓ = 6 when ∆′

x > 1 and for ℓ = 1 when
∆′

x > 3.

1

↑
3 → . . . → ?

↓
1 → ? 1

?

↑
1

1 1

6
→

1 ?
→

1→

1
→

26

6

↑
3 →

2
6

↓
6

→ . . . → ?
6

↑
6

Figure 10: ℓ = 1 (left) and ℓ = 6 (right) when m > 1,
∆′

x ̸≡4 χ(ℓ) and ∆′
y = 1

What remains of the ∆′
y = 1 case is when ℓ = 1

and ∆′
x ≤ 3 or when ℓ = 6 and ∆′

x = 1. Applying
our brute force algorithm, we found the paths required
∆′

x + ∆′
y + 6 moves when ℓ = 1, 6,∆′

x = 1. Thus by
Theorem 3, we need to check only boards up to size
8× 8 to find solutions of fewest moves.

5.2.6 ∆′
y = 2

Note that if ℓ = 1, we are not in the small displacement
case. Therefore, ℓ = 6. We can use the GPS depicted
in Figure 11:

1
↑

3
6

→ . . . → ?
6

↑
6

Figure 11: ℓ = 6 when ∆′
y = 2

5.2.7 ∆′
y = 3

The only time we are in this case is when ℓ = 6 and
∆′

x = 3. The GPS depicted in Figure 12 is of fewest
moves:

1

↑
3 → 2

↑
6 → 4

↓
2 → 1

↑
4

↑
6

Figure 12: ℓ = 6 when ∆′
y = ∆′

x = 3

34th Canadian Conference on Computational Geometry, 2022

5.2.8 Putting the cases together

The pseudo code small1 and small6 put the small dis-
placement cases together via the helper functions seen
in the appendix.

6 Finalized Approach

The main approach to solving a rolling cube maze is as
follows. Reduce inputs to a quadrant 1 problem, reduce
the inputs to a ℓ = 1 or ℓ = 6 problem, determine
the displacement type, create a GPS, and invert the
quadrant mapping to return a final GPS. Pseudo code
can be seen in the appendix.

Theorem 7 The length of the GPS returned by SRC is
bounded by a constant and is generated in constant time

7 Future Work

We believe that future work can now easily be done on
other rolling cube mazes by utilizing the fact that a path
from any space to any other space with a desired label
can be generated in constant time. We implemented
SRC and created the following visualization available
on github to aid any potential researchers interested in
exploring mazes with blocked spaces.

8 Acknowledgements

We would like to thank Professor Jack Snoeyink for
reading our drafts and for giving helpful feedback.

References

[1] Robert Abbott SuperMazes: Mind Twisters for Puzzle
Buffs, Game Nuts, and Other Smart People. Prima
Publishing, 1997.

[2] Kevin Buchin and Maike Buchin and Erik D. Demaine
and Martin L. Demaine and Dania El-Khechen and San-
dor Fekete and Christian Knauer and André Schulz and
Perouz Taslakian On rolling cube puzzles. In Proc. 19th
Canad. Conf. Comput. Geom., pages 141–148, 2007.

[3] Martin Gardner Mathematical games column. Scien-
tific American, 209(6):144, 1963.

[4] Jiawei Yao Research on the Minimum Moves of Rolling
Cube Puzzles JAIST, 2021.

Appendix

Proofs

Proof. (Lemma 1) Assume ℓ = 3, 4 and assume some GPS
G gets ℓ on top in k moves. Since ℓ is saved with respect
to the E −W axis, there must be a N or S in G in order to
get ℓ on top. Without loss of generality, assume a N move
exists in G. The N move is performed after some amount of

E and/or W moves. As stated previously, an E move can
be thought of as a negative W move. Thus, the sequence of
E and W moves prior to the first N move can be written
entirely as E’s or entirely as W ’s. Without loss of generality,
assume the moves can be represented entirely by E’s. That
is, the GPSG can be written as (E){c}NGs for some c where
Gs is the substring of G after the first N move.

We can write c ≡4 i for some i ∈ {0, 1, 2, 3}. Note (E){c}
will keep ℓ face saved. Then N will put ℓ = 3, 4 on either
the top or bottom respectively. Note that if we instead did
(E){i}N first, the same would be true. Then (E){c − i}
would keep ℓ = 3 on top and ℓ = 4 on bottom because
every four E moves puts the labels back on the faces they
started on. Thus the GPS G = (E){c}NGs can be written
as (E){i}N(E){c− i}Gs.

An analogous argument could have been made if G used
W moves rather than E moves at the beginning. Further-
more, an analogous argument could be made if the move
before Gs were a S move rather than a N move. b

Proof. (Theorem 2) As noted in the proof of Lemma 1,
when ℓ = 3, a N or S move must be performed at some
point in order to get label ℓ on top. Note that when a first
N move is performed, ℓ = 3 is on top at some (xr, yi + 1)
and this can be treated as an instance of the ℓ = 1 case,
which is SRC(m,n, xr, yi+1, xf , yf , 1). Similarly, note that
when a first S move is performed, ℓ = 3 is on bottom and
this can be treated as an instance of the ℓ = 6 case. By
Lemma 1, it follows that we only need to consider any paths
that begin with 0,1,2, or 3 consecutive E’s/W’s followed by
a N or S. Since we perform moves before reducing to ℓ = 1
or ℓ = 6, we are changing what ∆x and ∆y are. To take
care of this, we can define a helper function SRCReduction
which takes the same inputs as SRC along with two inputs
δx and δy so that the number of moves in the returned GPS
is correct. Also, since the E moves or W moves may change
the quadrant (xf , yf) is in, we need to do quad mapping
again before SRCReduction handles the ℓ = 1, 6 case. This
is not a problem because when ℓ = 1, 6, quad mapping does
not change the desired label. We will have that δx is the
difference of |xf −xi| and |xf −xr| and δy is the difference of
|yf−yi| and |yf−yr| where (xr, yr) is the position of the cube
when the reduction is called. The body of SRCReduction
can be seen in the appendix. Following these results, we get
the pseudo code handle3 in the appendix, which handles the
ℓ = 3 case. Since ℓ = 3 reduces to the ℓ = 1 or ℓ = 6 case
and the ℓ = 2 case is analogous to the ℓ = 3 case, it follows
that the ℓ = 2 case reduces to the ℓ = 1 or ℓ = 6 case. By
an analogous argument, we can handle the ℓ = 4, 5 cases, as
seen by the pseudo code for handle4 in the appendix. b

Proof. (Theorem 3) Assume there exists a GPS starting at
(xi, yi) and placing ℓ on top at (xf , yf) in ∆x + ∆y + 2k
moves on an m× n board. Now consider a GPS G of fewest
moves from (xc, yc) to (xc + ∆x, yc + ∆y) ending with the
same ℓ on top, for some xc > k and yc > k. Assume for the
sake of contradiction that G requires moving west or south
of (xc−k, yc−k) or north or east of (xc+∆x+k, yc+∆y+k).
Without loss of generality, assume G requires moving west of
(xc−k, yc−k). That is, there exists a position (xc−k−1, yd)
for some yd that is visited by G. Note that at a minimum,

https://github.com/hilovids/Rolling-Cube-Maze-Simulator

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

this requires |(xc)−(xc−k−1)| = k+1 moves. Then, at the
very minimum, going from this space (xc − k− 1, yd) to the
ending space (xc+∆x, yc+∆y) requires (xc+∆x)−(xc−k−
1)+(yc+∆y)−(yd) = ∆x+∆y+k+1+yc−yd moves. Thus
in total G requires (k + 1) + (∆x +∆y + k + 1+ yc − yd) =
∆x + ∆y + 2(k + 1) + yc − yd ≥ ∆x + ∆y + 2(k + 1) + 0
moves. Thus G requires more than ∆x + ∆y + 2k moves.
This is a contradiction because we assumed G required the
fewest moves and we already know a path of ∆x +∆y + 2k
exists. b

Proof. (Theorem 4) This statement is equivalent to Theo-
rem 1 in “Research on the Minimum Moves of Rolling Cube
Puzzles” [4]. b

Proof. (Theorem 5) Consider a path from (xr, yr) to
(xf , yf) with final label ℓ = 1, 6 on a board with m > 1,
such that ∆y = 0, ∆′

x > χ(ℓ) and ∆′
x ̸≡4 χ(ℓ). Since ∆′

y = 0
and ∆′

x ̸≡4 χ(ℓ), in order to place ℓ on top at (xf , yf), a N
and S move must be performed eventually. Thus, a solution
must have more than ∆′

x +∆′
y moves. By Theorem 4, then,

we know any solution must be at least ∆x +∆y + 2 moves.
Because m > 1, there is either a row above (xr, yr) or be-
low (xr, yr). If there exists a row above (xi, yi), the GPS
N(E){∆′

x−χ(ℓ)}S(E){χ(ℓ)} places ℓ on top in ∆x+∆′
y +2

moves. Similarly, if there exists a row below (xr, yr),
the GPS S(E){∆′

x − χ(ℓ)}N(E){χ(ℓ)} places ℓ on top in
∆′

x + ∆′
y + 2 moves. Thus, the shortest path under these

conditions is exactly ∆′
x +∆′

y + 2 moves. b

Proof. (Theorem 6) Consider the ℓ = 1, 6 small displace-
ment case and assume ∆′

y = 1, ∆′
x > 1 and ∆′

x ̸≡4 χ(ℓ).
Note that a path to (xf , yf) using ∆′

x + ∆′
y moves must

have exactly 1 N move, which will come after c E moves and
be followed by ∆′

x − c E moves. If c ≡4 0, 2, we find that
ℓ = 1 will be saved on the North or South faces, respectively,
and ℓ = 6 will be saved on the South or North faces, respec-
tively. This means that the remaining E moves cannot get
ℓ = 1, 6 on the top face. If c ≡4 1, 3, we see that ℓ = 1
will be on the East and West faces, respectively, and remain
there after the N move. Similarly, ℓ = 6 will be on the West
and East faces, respectively, and will also remain there after
the N move. For both c ≡4 1, 3, the label ℓ will only be on
top when the total number ∆′

x of E moves is of the form
4k + χ(ℓ). Since we know by initial assumption that this is
not true of ∆′

x, we see that using only ∆′
x+∆′

y moves leaves
us unable to place ℓ = 1 or ℓ = 6 on top at (xf , yf). Thus,
by Theorem 4, we need at least ∆x +∆′

y +2 moves to place
ℓ = 1, 6 on top at (xf , yf). b

Proof. (Theorem 7) To avoid the returning a string whose
length depends on the number of digits in |xf − xi| and
|yf − yi|, we return a GPS that uses the literal characters
∆x and ∆y. Note further that δx and δy are at most 3, so
that is why we can use the numbers they represent rather
than also using the literal characters. Therefore, the length
of the GPS returned is bounded by a constant.
We have shown that we perform quadrant mapping and re-
duce any instance of the problem to the ℓ = 1, 6 cases in
constant time. Clearly, the large displacement case can be
handled in constant time. As for the small case, as stated

in Section 5.1, the complexity of the brute force algorithm
used in some of our proofs depends on m and n. How-
ever, this algorithm is only necessary for a finite number of
scenarios. We have provided the output for each of these
scenarios and thus our proposed algorithm finds these solu-
tions by performing a simple lookup. Finally, we can invert
the quadrant mapping in constant time. Therefore, the final
GPS is generated in constant time. b

Algorithms

def mapToQuad1 (m,n,xi,yi,xf,yf,ℓ):
set newL = ℓ and set q = [0,0]
if xf < xi:

q[0] = 1
if ℓ = 2:

newL = 5
elif ℓ = 5

newL = 2
if yf < yi:

q[1] = 1
if ℓ = 3:

newL = 4
elif ℓ = 4

newL = 3
newXi = (n - xi) + 1 if q[0] == 1 else xi
newYi = (m - yi) + 1 if q[1] == 1 else yi
newXf = (n - xf) + 1 if q[0] == 1 else xf
newYf = (m - yf) + 1 if q[1] == 1 else yf
return (newXi ,newYi),(newXf,newYf),newL,q

def convGPS (q,GPS):
if q[0] == 1

switch all Es and Ws in GPS
if q[1] == 1

switch all Ns and Ss in GPS
return GPS

def handle2(m,n,xi,yi,xf,yf):
return handle3(n,m,yi,xi,yf,xf) swapping Ns with Es, Ss with Ws,
and ∆x with ∆y

def handle5(m,n,xi,yi,xf,yf):
return handle4(n,m,yi,xi,yf,xf) swapping Ns with Es and Ss with Ws,
and ∆x with ∆y

def SRCReduction(m,n,xr,yr,xf,yf,ℓ,δx, δy):
(m,n,xr,yr,xf,yf,ℓ,q) = mapToQuad1(m,n,xr,yr,xf,yf,ℓ)
if q[0] == 1:

δx = −δx
if q[1] == 1:

δy = −δy
if ℓ == 1:

GPS = handle1(m,n,xr,yr,xf,yf,δx, δy)
elif ℓ == 6:

GPS = handle6(m,n,xr,yr,xf,yf,δx, δy)
return ConvGPS(q,GPS)

def handle3(m,n,xi,yi,xf,yf)
initialize a list of paths
for i in [0,1,2,3]:

path1 = (E){i}N +
SRCReduction(m,n,xi + i,yi+1,xf,yf,1,
||xf − xi| − |xf − (xi + i)||, ||yf − yi| − |yf − (yi + i)||)
path2 = (E){i}S +
SRCReduction(m,n,xi + i,yi-1,xf,yf, 6,
||xf − xi| − |xf − (xi + i)||,−||yf − yi| − |yf − (yi − i)||)
path3 = (W){i}N +
SRCReduction(m,n,xi - i,yi+1,xf,yf,1,
−||xf − xi| − |xf − (xi − i)||, |yf − yi| − |yf − (yi + i)|)
path4 = (W){i}S +
SRCReduction(m,n,xi - i,yi-1,xf,yf,6,
−||xf − xi| − |xf − (xi − i)||,−||yf − yi| − |yf − (yi − i)||)
add each path to the list of paths

return the computed path of fewest moves or false if none exist

def handle4(m,n,xi,yi,xf,yf):
initialize a list of paths
for i in [0,1,2,3]:

path1 = (E){i}N +
SRCReduction(m,n,xi + i,yi+1,xf,yf,6,

34th Canadian Conference on Computational Geometry, 2022

||xf − xi| − |xf − (xi + i)||, ||yf − yi| − |yf − (yi + i)||)
path2 = (E){i}S +
SRCReduction(m,n,xi + i,yi-1,xf,yf,1,
||xf − xi| − |xf − (xi + i)||,−||yf − yi| − |yf − (yi − i)||)
path3 = (W){i}N +
SRCReduction(m,n,xi - i,yi+1,xf,yf,6,
−||xf − xi| − |xf − (xi − i)||, ||yf − yi| − |yf − (yi + i)||)
path4 = (W){i}S +
SRCReduction(m,n,xi - i,yi-1,xf,yf,1,
−||xf − xi| − |xf − (xi − i)||,−||yf − yi| − |yf − (yi − i)||)
add each path to the list of paths

return the computed path of fewest moves or false if none exist

def handle1(m,n,xr,yr,xf,yf,δx, δy):
dxPrime = xf - xr, dyPrime = yf - yr
if dxPrime > 1 and dyPrime > 1:

return the large displacement template
else:

return the small displacement template

def handle6(m,n,xr,yr,xf,yf,δx, δy):
dxPrime = xf - xr, dyPrime = yf - yr
if dxPrime > 3 and dyPrime > 1 or dxPrime > 1 and dyPrime > 3:

return the large displacement template
else:

return the small displacement template

def large1(δx,δy):
return N(E){∆x - δx- 2}NE(N){∆y - δy - 2}E

def large6(dxPrime,dyPrime,δx,δy):
if dxPrime > 1 and dyPrime > 3:

return NNE(N){∆y - δy - 4}EN(E){∆x - δx - 2}N
elif dxPrime > 3 and dyPrime > 1:

return EEN(E){∆x - δx - 4}NE(N){∆y - δy - 2}E

def small1symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime)
answer = small1(n,m,yr,xr,yf,xf,dyPrime,dxPrime,δy ,δx)
return answer but switch Ns with Es and Ss with Ws and ∆x with ∆y

def small6symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime)
answer = small6(n,m,yr,xr,yf,xf,dyPrime,dxPrime,δy ,δx)
return answer but switch Ns with Es and Ss with Ws and ∆x with ∆y

def small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime): return I

def small6case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime): return False

def small1case2(m,n,xr,yr,xf,yf,dx,dy,δx,δy)
return (E){∆x - δx - 1}(N){∆y - δy}E

def small6case2(m,n,xr,yr,xf,yf,dx,dy,δx,δy)
return (E){∆x - δx - 1}(N){∆y - δy}E

def small1case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if yf < m:

return N(E){∆x - δx}S
elif yr > 1:

return S(E){∆x - δx}N
else:

return False

def small6case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if m == 1:

return False
elif dxPrime > 1 and yf < m:

return N(E){∆x - δx - 2}SEE
elif dxPrime > 1 and yr > 1:

return S(E){∆x - δx - 2}NEE
elif dxPrime == 1:

if xr > 1:
return NWSEE

elif yf < m - 1:
return NENWSSE

elif yr > 2
return SESWNNE

elif xr < n - 1 :
if yf < m:

return NEEESWW
elif yr > 1:

return SEEENWW
elif (xr > 1 and yr > 1):

return SWNESEENW
else:

return False

def small1case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if dxPrime > 3:

return N(E){∆x - δx - 4}SENEEE
elif dxPrime == 2 or dxPrime == 3:

if yf < m:
return N(E){∆x - δx - 2}NESE

elif yr > 1:
return ESEN(E){∆x - δx - 2}N

else:
return ENWS(E){∆x - δx}N

elif dxPrime == 1:
if yr > 1:

return SENWNE
elif xr > 1:

return WNESEN
elif yf < m - 1:

return NNENWSES
elif xf < n - 1:

return EENESWNW
else:

return False

def small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime, δx, δy)
if dxPrime > 1:

return ENES(E){∆x - δx - 2}N
elif dxPrime == 1:

if yr > 1:
return ESWNEN

elif xr > 1:
return NWSENE

elif yf < m-2:
return NNNESWSE

elif xf < n-2:
return EEENWSWN

else:
return False

def small6case5(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
return N(E){∆x - δx}N

def small6case6(m,n,xi,yi,xf,yf,dx,dy)
return NENESENN

def small1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
if dyPrime > dxPrime:

return small1symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif (dxPrime,dyPrime) == (0,0):

return small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dxPrime == 0 mod 4:

return small1case2(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 0:

return small1case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 1:

return small1case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)

def small6(m,n,xr,yr,xf,yf,dx,dy,δx,δy):
if dyPrime > dxPrime:

return small6symmetry(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif (dxPrime,dyPrime) == (0,0):

return small1case1(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dxPrime == 2 mod 4:

return small6case2(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 0:

return small6case3(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 1:

return small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime.δx,δy)
elif dyPrime == 2:

return small6case4(m,n,xr,yr,xf,yf,dxPrime,dyPrime,δx,δy)
elif dyPrime == 3:

return small6case6(m,n,xr,yr,xf,yf,dxPrime,dyPrime, δx,δy)

def SRC(m,n,xi,yi,xf,yf,ℓ):
xi,yi,xf,yf,ℓ,q = mapToQuad1(m,n,xi,yi,xf,yf,ℓ)
if ℓ == 1:

GPS = handle1(m,n,xi,yi,xf,yf,0,0)
elif ℓ == 2:

GPS = handle2(m,n,xi,yi,xf,yf)
elif ℓ == 3:

GPS = handle3(m,n,xi,yi,xf,yf)
elif ℓ == 4:

GPS = handle4(m,n,xi,yi,xf,yf)
elif ℓ == 5:

GPS = handle5(m,n,xi,yi,xf,yf)
elif ℓ == 6:

GPS = handle6(m,n,xi,yi,xf,yf,0,0)
return ConvGPS(q,GPS)

	Introduction
	Notation
	Describing Faces and Assigning Labels
	Describing Moves and Paths

	Simplifying the Problem
	Face Saving
	Quadrant Mapping
	Reductions
	Displacement Types

	Large displacements
	Small Displacements
	Breadth First Search Approach
	Systematic Approach
	Symmetry
	x' = 0 and y' = 0
	x' 4 ()
	y' = 0
	 y' = 1
	y' = 2
	y' = 3
	Putting the cases together

	Finalized Approach
	Future Work
	Acknowledgements

