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Quantitative Helly-type Theorems via Hypergraph Chains

Attila Jung*

Abstract

We propose a combinatorial framework to analyze quan-
titative Helly-type questions. Using this framework,
we prove a Quantitative Fractional Helly Theorem with
Fractional Helly Number 3d and a stability version of
the Quantitative Helly Theorem of Bárány, Katchalski
and Pach.

1 Introduction

Two directions in the study of Helly-type Theorems
are quantitative and abstract questions. Quantitative
results concern intersection patterns of convex sets in
some specific space, originally Rd, where instead of find-
ing points in the intersection, one bounds the size, for
example the volume or the diameter of the intersection.
Abstract results, on the other hand, study more general
structures, e.g. hypergraphs, with certain properties
that capture some essential aspects of the behavior of
convex sets. In this note, we connect the two.

First, consider the Quantitative Volume Theorem.

Theorem 1 [Bárány, Katchalski and Pach [3]] As-
sume that the intersection of any 2d members of a fi-
nite family of convex sets in Rd is of volume at least
one. Then the volume of the intersection of all mem-
bers of the family is of volume at least c(d), a constant
depending on d only.

In [3], it is proved that one can take c(d) = d−2d2 and
conjectured that it should hold with c(d) = d−cd for
an absolute constant c > 0. Theorem 1 was confirmed
with c(d) ≈ d−2d by Naszódi [14], whose argument was
refined by Brazitikos [4], who showed that one may take
c(d) ≈ d−3d/2. For more on quantitative Helly-type
results, see the surveys [6, 8].

Helly’s theorem may be stated in the language of hy-
pergraphs as follows. Let V be a finite family of convex
sets in Rd, and call a subset of V an edge of our hy-
pergraph, if the intersection of the corresponding con-
vex sets is not empty. Helly’s theorem states that if all
(d + 1)-tuples of a subset S of V are edges of the hy-
pergraph, then so is S. Observe that Theorem 1 cannot
be translated to the same language, as two hypergaphs
are involved: in one, the edges correspond to families of
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convex sets whose intersection is of volume at least one,
and in the other, this volume is at least c(d). The goal
of this note is to provide a combinatorial framework in
which Theorem 1, and other quantitative results can be
translated.

The Colorful Helly Theorem found by Lovász [12]
(and with the first published proof by Bárány [2]) states
the following. If C1, . . . , Cd+1 are finite families (color
classes) of convex sets in Rd, such that for any color-
ful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, the intersection
d+1⋂
i=1

Ci is non-empty, then for some j, the intersection⋂
C∈Cj C is also non-empty.

In [5], the following quantitative variant is shown.

Theorem 2 [Damásdi, Földvári and Naszódi [5]] Let
C1, . . . , C3d be finite families of convex sets in Rd. As-
sume that for any colorful selection C1 ∈ C1, . . . , C3d ∈

C3d, the intersection
3d⋂
i=1

Ci is of volume at least one.

Then, there is a j with 1 ≤ j ≤ 3d such that

vol

( ⋂
C∈Cj

C

)
≥ d−cd2 with a universal constant c > 0.

The Fractional Helly Theorem due to Katchalski and
Liu [11] (see also [13, Chapter 8]) is another classical
Helly-type result, which states the following. Fix a di-
mension d, and an α ∈ (0, 1), and let C be a finite fam-
ily of convex sets in Rd with the property that among
the subfamilies of C of size d + 1, there are at least
α
( |C|
d+1

)
for whom the intersection of the d+ 1 members

is nonempty. Then, there is a subfamily C′ ⊂ C of size
|C′| ≥ α

d+1 |C| such that the intersection of all members
of C′ is nonempty.

In [10], the following quantitative variant of the Frac-
tional Helly Theorem is shown.

Theorem 3 [Jung and Naszódi [10]] For every dimen-
sion d ≥ 1 and every α ∈ (0, 1), there is a β ∈ (0, 1)
such that the following holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 3d + 1, there are at
least α

( |C|
3d+1

)
for whom the intersection of the 3d + 1

members is of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

2

with a universal con-

stant c > 0.
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In Theorems 1, 2 and 3, the cardinalities 2d, 3d and
3d+ 1 appear, respectively. It is easy to verify (cf. [3])
that Theorem 1 does not hold with any number below
2d, which implies the same lower bound for the other
two theorems. No better lower bounds are known.

Turning to abstract results, we describe Helly’s The-
orem and the Fractional and Colorful Helly Theorems
in the language of hypergraphs. Let V be a (possibly
infinite) set. A hypergraph on the base set V is any fam-
ily of its subsets, H ⊂ 2V . A hypergraph is downwards
closed, if H ∈ H and G ⊂ H implies G ∈ H. A down-
wards closed hypergraph H has Helly Number h, if for
every finite subset S ⊂ V the relation

(
S
h

)
⊂ H implies

S ∈ H. Now let us denote the family of convex sets of
Rd as Cvx(d) and the hypergraph which contains the
subfamilies of convex sets with nonempty intersection
by Kd = {C ⊂ Cvx(d) : ∩C∈CC 6= ∅}. Helly’s Theorem
says that Kd has Helly-number d+ 1.

A downwards closed hypergraph H over a base set V
has Fractional Helly Number k, if there exists a function
β : (0, 1) → (0, 1) such that whenever S ⊂ V is a finite

subset such that
∣∣∣H ∩ (Sk)∣∣∣, the number of edges of H

of size k in S is at least α
(|S|
k

)
with an α ∈ (0, 1), then

there exists a subset S′ ⊂ S of size at least β|S| such
that S′ ∈ H. The Fractional Helly Theorem says, that
Kd has Fractional Helly Number d+ 1.

We turn to phrasing the Colorful Helly Theorem in
an abstract setting. Let S1, . . . , Sk ⊂ V be (not neces-
sarily disjoint) subsets of a base set V , which we will call
color classes. We call a set F ⊂ V a colorful selection
from these color classes, if F contains one element from
each color class. Very formally, to clarify how elements
belonging to multiple color classes are handled, we say
that F ⊂ V is a colorful selection, if there is a surjective
map φ : [k] −→ F with φ(i) ∈ Si for all i ∈ [k]. We
denote the set of colorful selections by S1 ⊗ . . .⊗ Sk.

A downwards closed hypergraph H over a base set V
has Colorful Helly Number k, if for every k finite subset
S1, . . . , Sk ⊂ V such that (S1 ⊗ . . . ⊗ Sk) ⊆ H, there
exists a color class Sj with Sj ∈ H. The Colorful Helly
Theorem says that Kd has Colorful Helly Number d+1.

Alon, Kalai, Matoušek and Meshulam [1] considered
Helly-type results in the abstract setting. They showed,
that if a hypergraph has bounded Fractional Helly Num-
ber, then it also has the so called (p, q) property (see the
definition in [1]). Holmsen [9] showed that if a hyper-
graph has Colorful Helly Number k, then it has Frac-
tional Helly Number at most k. In this sense, the Frac-
tional Helly Theorem can be deduced from the Colorful
Helly Theorem with a purely combinatorial proof. Note
that Holmsen’s result does not immediately imply a sim-
ilar relationship between Theorem 2 and Theorem 3,
because there are two different kinds of intersection of
convex sets (sets intersecting in volume one and sets

intersecting in volume d−cd
2

).

We introduce the notion of hypergraph chains, and
our first main result, Theorem 8 states that Holmsen’s
result extends to hypergraph chains, and, as a result,
it can be applied in the context of quantitative Helly-
type questions. It follows (see Corollary 12) that in
Theorem 3 we can decrease the number 3d + 1 to 3d
(at the expense of a bigger loss of volume). Our second
main result, Theorem 9 states that Theorem 1 is stable:
one does not need to check that all 2d-tuples of the
given convex sets have intersection of volume at least
one. Instead, it is sufficient to verify it for almost all of
them to obtain that almost all have an intersection of
some positive volume.

Quantitative Helly-type theorems are considered in
[7, 15, 16] with the focus on convex sets in Rd, or the
lattice Zd, or sets in topological spaces with particular
topological properties. To our knowledge, ours is the
first attempt to address quantitative Helly-type ques-
tions in the general context of hypergraphs in the spirit
of the results of [1] and [9].

2 Hypergraph Chains

Definition 4 Let V be a (possibly infinite) set. The
infinite sequence (H`)`∈Z of hypergraphs over the base
set V is a hypergraph chain, if every H` is downwards
closed and for all ` ∈ Z, H` ⊂ H`+1.

If V = Cvx(d) and H` = Kd for all `, then (H`)`∈Z
is a hypergraph chain. A more interesting example is
when V = Cvx(d), v ∈ (0, 1) a real number and for an
` ∈ Z, a family of convex sets from Rd is an edge in H`,
if and only if their intersection is of volume at least v`.
We will denote this hypergraph by Qd

(
v`
)
.

Definition 5 A hypergraph chain (H`)`∈Z over a base
set V has Helly Number h, if for every S ⊆ V ,

(
S
h

)
⊂ H`

implies S ∈ H`+1.

According to this definition, (Kd)`∈Z has Helly Num-
ber d+ 1.

More interestingly, Theorem 1 states that if v ≈
d−3d/2, then

(
Qd
(
v`
))
`∈Z has Helly Number 2d.

Definition 6 A hypergraph chain (H`)`∈Z over a base
set V has Colorful Helly Number k, if whenever
S1, . . . , Sk are finite subsets (color classes) of V and
S1 ⊗ . . . ⊗ Sk ⊂ H`, then there is a color class Sj with
Sj ∈ H`+1.

Note that by taking S1 = S2 = ... = Sk = S, a hy-
pergraph chain with Colorful Helly Number k has Helly
Number h ≤ k.

According to the definition, (Kd)`∈Z has Colorful
Helly Number d+ 1.

More interestingly, the Quantitative Colorful Helly
Theorem, Theorem 2 may be stated as follows. If v =
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d−cd
2

from Theorem 2, then
(
Qd
(
v`
))
`∈Z has Colorful

Helly Number 3d.

Definition 7 A hypergraph chain (H`)`∈Z over a base
set V has Fractional Helly Number k, if there exists a
function β : (0, 1)→ (0, 1) such that for every finite set

S ⊂ V , if |H` ∩
(
S
k

)
| ≥ α

(|S|
k

)
with some α ∈ (0, 1),

then there exists an S′ ⊂ S with |S′| ≥ β(α)|S| and
S′ ∈ H`+1.

As in the previous two cases, (Kd)`∈Z has Fractional
Helly Number d + 1 and Theorem 3 states, that if v =
d−cd

2

from Theorem 3, then
(
Qd
(
v`
))
`∈Z has Fractional

Helly Number 3d+ 1.
Now we are ready to state our main result, which is

a quantitative analogue of Theorem 3 from [9].

Theorem 8 If the hypergraph chain (H`)`∈Z has Col-
orful Helly Number k, then (H(k+1)`)`∈Z has Fractional
Helly Number k.

Here, the obtained Fractional Helly Number is the
same as the assumed Colorful Helly Number, but not
for the exact same hypergraph chain: we can only take
every (k + 1)th element from the original chain. Can
the Fractional Helly number go below the Colorful Helly
number? If for a hypergraph chain the Helly Number is
smaller than the Colorful Helly Number, the answer is
a partial yes.

Theorem 9 If the hypergraph chain (H`)`∈Z has Helly
Number h and Colorful Helly Number k ≥ h, then there
exists a function β : (0, 1) → [0, 1) with limα→1 β(α) =
1 such that for every finite set S ⊂ V , if |H` ∩

(
S
h

)
| ≥

α
(|S|
h

)
with some α ∈ (0, 1), then there exists an S′ ⊂ S

with |S′| ≥ β(α)|S| and S′ ∈ H`+3.

We can interpret this result as a stability version of the
Helly property (under some additional assumptions),
since limα→1 β(α) = 1.

As far as we know, the best possible β here might
assign 0 to a large fraction of αs from (0, 1), this is the
difference from hypergraph chains with Fractional Helly
Number h, where this is not possible. But at least, if α
is very close to 1, then β(α) is also close to 1.

3 Proof of Theorems 8 and 9

Let us begin with an analogue of Lemma 3.1 from [9].
We denote by ωh(H`|S) the size of the largest h-clique
of S, ie. the size of the largest subset K ⊂ S such that(
K
h

)
⊂ H`.

Lemma 10 Let (H`)`∈Z be a hypergraph chain with
Helly Number h and Colorful Helly Number k over a
base set V . Then for every finite subset S ⊂ V , we
have

(a)
∣∣∣(Sk) \ H`∣∣∣ ≥ ( 1

k (|S|−ωk(H`+1|S))
k

)
, and

(b)
∣∣∣(Sh) \ H`∣∣∣ ≥ (kh)−1( 1

h (|S|−ωh(H`+2|S))
h

)
.

Proof. Note that h ≤ k holds for every hypergraph
chain of Helly Number h and Colorful Helly Number k.
Fix ` ∈ Z.

For the proof of part (a), let {M1, . . . ,Mt} ⊂
(
S
k

)
\

H`+1 be a maximal size family of disjoint missing edges
from H`+1, each of size k. By the maximality of this

family, we have
(
S\(M1∪...∪Mt)

k

)
⊂ H`+1, and thus,

ωk(H`+1|S) ≥ |S \ (M1 ∪ . . .∪Mt)| = |S| − tk or, equiv-
alently,

t ≥ 1

k
((|S| − ωk(H`+1|S))). (1)

Consider a selection I ∈
(

[t]
k

)
of k indices. Since each

Mi is a missing edge fromH`+1, we have that {Mi : i ∈
I} is a family of k color classes, such that neither one
is contained in H`+1. Since (H`)`∈Z has Colorful Helly
Number k, there is a colorful selection {vi : i ∈ I} ⊂ V
of vertices (that is, vi ∈ Mi for all i ∈ I) such that
{vi : i ∈ I} is not an edge in H`.

Observe that if I1, I2 ∈
(

[t]
k

)
are distinct selections of

indices, then, by the disjointness of the Mj , we have
that {vi : i ∈ I1} 6= {vi : i ∈ I2}. Thus, we found

(
t
k

)
members of

(
S
k

)
\ H`, completing the proof of part (a).

For the proof of part (b), let {M1, . . . ,Mt} ⊂
(
S
h

)
\

H`+2 be a maximal size family of disjoint missing edges
from H`+2, each of size h. Similarly to the argument in
part (a), we have

t ≥ 1

h
((|S| − ωh(H`+2|S))). (2)

Consider a selection I ∈
(

[t]
k

)
of k indices. Again, as

in the proof of part (a), since (H`)`∈Z has Colorful Helly
Number k, there is a colorful selection {vi : i ∈ I} ⊂ V
of vertices from the color classes {Mi : i ∈ I} such
that {vi : i ∈ I} is not an edge in H`+1. By the Helly
property, there is a J ∈

(
I
h

)
and an F ∈

(
S
h

)
\ H` such

that |F ∩Mj | = 1 for every j ∈ J . Any fixed J ∈
(

[t]
h

)
can appear at most

(
t−h
k−h
)

times in this way. Moreover,

any fixed F ∈
(
S
h

)
\ H` may appear for only one J , so

there are at least
(
t
k

)
/
(
t−h
k−h
)

=
(
t
h

)
/
(
k
h

)
missing edges

F ∈
(
S
h

)
\ H`, which combined with (2) completes the

proof of part (b) of Lemma 10. �

Proof. [of Theorem 9] Fix ` ∈ Z and assume that the
largest edge of H`+3 in S is of size at most (1 − ε)|S|
for some ε > 0. Since (H`)`∈Z has Helly Number h, this
implies ωh(H`+2|S) ≤ (1− ε)|S|. Part (b) of Lemma 10

yields
∣∣∣(Sh) \ H`∣∣∣ ≥ (kh)−1(ε|S|/h

h

)
≥ δ ·

(|S|
h

)
with some

δ = δ(ε, k, h) > 0. Thus, if β(α) ≤ 1−ε, then α ≤ 1−δ,
proving Theorem 9. �
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In order to prove Theorem 8, we need the following
technical lemma, which is an analogue of Lemma 3.2
from [9] and can be proved using part (a) of Lemma 10.

Lemma 11 Let (H`)`∈Z be a hypergraph chain over a
base set V with Colorful Helly Number k. Let S ⊂ V
be a finite subset with |S| = n large enough. If for a
t ∈ Z and c ∈ (0, 1) the inequality ωk(Ht+1|S) ≤ cn/2
holds, then given any i ∈ [k] and a family Fi ⊂

(
S
i

)
with

|Fi| ≥ c
(
n
i

)
there exists another family Fi−1 ⊂

(
S
i−1

)
and an M ∈

(
S
k

)
\ Ht such that |Fi−1| ≥

(
c

12k2

)k ( n
n−1

)
and A ∪ {v} ∈ Fi for all A ∈ Fi−1 and v ∈M .

Proof. For every A ∈
(
S
i−1

)
let ΓA = {v ∈ S : (A ∪

{v}) ∈ Fi} and let

P =

{
(A,M) : A ∈

(
S

i− 1

)
,M ∈

(
ΓA
k

)
\ Ht

}
.

We want to lower bound |P|. By part (a) of
Lemma 10, for a fixed A ∈

(
S
i−1

)
there are at least( 1

k (|ΓA|−(c/2)n)
k

)
distinct M ∈

(
ΓA

k

)
\ Ht such that

(A,M) ∈ P. Jensen’s inequality gives

|P| ≥
∑

A∈( S
i−1)

( 1
k (|ΓA| − (c/2)n)

k

)

≥
(

n

i− 1

)(( n
i−1

)−1 1
k

∑
A∈( S

i−1)
(|ΓA| − (c/2)n)

k

)
.

Since∑
A∈( S

i−1)

|ΓA| = i|Fi| ≥ ic
(
n

i

)
> (n− i)c

(
n

i− 1

)
,

we get∑
A∈( S

i−1)

(|ΓA| − (c/2)n) > (n−i)c
(

n

i− 1

)
−(c/2)n

(
n

i− 1

)
,

and thus

|P| ≥
(

n

i− 1

)(nc
2k −

ci
k

k

)
.

If n is large enough compared to i and k, then

|P| ≥
( c

12k2

)k ( n

i− 1

)(
n

k

)
.

Since there are
(
n
k

)
possible M ∈

(
S
k

)
, there is an M

with at least
(

c
12k2

)k ( n
i−1

)
different A ∈

(
S
i−1

)
such that

(A,M) ∈ P. These A will form Fi−1. �

Proof. [of Theorem 8] We are given α ∈ (0, 1), and our
goal is to find the corresponding β ∈ (0, 1) satisfying

Definition 7. Let f(x) =
(

x
12k2

)k
, α0 = α, αi+1 = f(αi).

We will show that β = αk−1 is a good choice. Fix ` ∈ Z
and suppose for a contradiction that

∣∣∣H` ∩ (Sk)∣∣∣ ≥ α(nk),
but H`+k+1 has no edge of size at least βn inside S.
Since (H`)`∈Z has Colorful Helly Number k, it has Helly
Number at most k, so H`+k+1 having no edge of size at
least βn implies ωk(H`+k|S) < βn.

Set Fk = H` ∩
(
S
k

)
. Since (H`)`∈Z is a hypergraph

chain, Fk ⊂ H`+i for all i ≥ 0, in particular, Fk ⊂ H`+k.
We have |Fk| ≥ α

(
n
k

)
and ωk(H`+k|S) < βn ≤ (α/2)n,

so we can apply Lemma 11 with t = `+k−1 and c = α
to obtain an Fk−1 ⊂

(
S
k−1

)
with |Fk−1| ≥ α1

(
n
k−1

)
and

an M1 ∈
(
S
k

)
\ H`+k−1 such that A ∪ {v} ∈ Fk for all

A ∈ Fk−1 and v ∈M1. Now, we have |Fk−1| ≥ α1

(
n
k−1

)
and ωk(H`+k−1|S) ≤ ωk(H`+k|S) < βn ≤ (α1/2)n and
we can apply Lemma 11 again, this time with t = ` +
k − 2 and c = α1, to obtain an Fk−2 ⊂

(
S
k−2

)
with

|Fk−2| ≥ α2

(
n
k−2

)
and an M2 ∈

(
S
k

)
\ H`+k−2 such that

(A ∪ {v}) ∈ Fk−1 for all A ∈ Fk−2 and v ∈ M2. Note
that (A ∪ {v1, v2}) ∈ Fk = H` ∩

(
S
k

)
for all A ∈ Fk−2,

v1 ∈M1, v2 ∈M2.
After repeating this process k−1 times, we obtain an

F1 ⊂
(
S
1

)
with |F1| ≥ αk−1n = βn and M1, . . . ,Mk−1 ∈(

S
k

)
\ H`+1 such that A ∪ {v1, . . . , vk−1} ∈ H` ∩

(
S
k

)
for all A ∈ F1, v1 ∈ M1, . . . , vk−1 ∈ Mk−1. Since

ωk(H`+1|S) < βn, there must be an Mk ∈
(
V (F1)
k

)
\

H`+1. But regarding M1, . . . ,Mk as color classes,
(H`)`∈Z having Colorful Helly-number k yields a con-
tradiction, since M1 ⊗ . . . ⊗Mk ⊂ H`, but there is no
color class Mi ∈ H`+1. �

4 Consequences for Quantitative Theorems

If v = d−cd
2

from Theorem 2, then
(
Qd
(
v`
))
`∈Z has

Colorful Helly Number 3d by Theorem 2, so the follow-
ing Corollary follows from Theorem 8.

Corollary 12 For every dimension d ≥ 1 and every
α ∈ (0, 1), there is a β ∈ (0, 1) such that the following
holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 3d, there are at least
α
(|C|

3d

)
for whom the intersection of the 3d members is

of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

3

with a universal con-

stant c > 0.

Proof. The above claim is equivalent to saying that(
Qd
(
v`
))
`∈Z has Fractional Helly Number 3d, if v =

d−c
′d3 with a universal constant c′. Theorem 2 states

that
(
Qd
(
v`
))
`∈Z has Colorful Helly Number 3d, if

v = d−cd
2

as in Theorem 2. By applying Theorem 8
to the latter Hypergraph Chain, we can conclude, that
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(
Qd
(
v(3d+1)`

))
`∈Z has Fractional Helly Number 3d and

v = d−cd
2

. But this is equvivalent to
(
Qd
(
v`
))
`∈Z hav-

ing Fractional Helly Number 3d if v = d−c
′d3 . �

This is a slight improvement on the Fractional Helly
Number, which was 3d + 1 in Theorem 3. Can we go
below 3d? Theorem 9 implies at least a stability version
of the Quantitative Helly Theorem with Helly Number
2d as follows.

Corollary 13 For every positive integer d there exists
a function β : (0, 1)→ [0, 1) with limα→1 β(α) = 1 such
that the following holds.
Let C be a finite family of convex sets in Rd. Assume
that among all subfamilies of size 2d, there are at least
α
(|C|

2d

)
for whom the intersection of the 2d members is

of volume at least one.
Then, there is a subfamily C′ ⊂ C of size at least β|C|

such that vol

( ⋂
C∈C′

C

)
≥ d−cd

2

with a universal con-

stant c > 0.

Proof. Since
(
Qd
(
v`
))
`∈Z, with v = d−cd

2

from The-
orem 2, has Helly Number 2d by Theorem 1 and Col-
orful Helly Number 3d by Theorem 2, we can apply
Theorem 9. The assumption of Corollary 13 states
that for a finite subset of convex sets C, the inequal-

ity
∣∣∣Qd(v0) ∩

( C
2d

)∣∣∣ ≥ α
(|C|

2d

)
holds with some α ∈ (0, 1),

where v can be v = d−cd
2

from Theorem 2. Theorem 9
yields a subfamily C′ ⊂ C with C′ ∈ Qd(v3) and |C′| ≥
β(α)|C|, where β is the function from Theorem 9. For

C′, the inequality vol

( ⋂
C∈C′

C

)
≥
(
d−cd

2
)3

= d−3cd2

holds. �

5 Remarks

The following questions are left open.

Conjecture 1 For every dimension d, there is a v =
v(d) ∈ (0, 1), such that

(
Qd
(
v`
))
`∈Z has Fractional

Helly Number 2d.

Conjecture 2 For every dimension d, there is a v =
v(d) ∈ (0, 1), such that

(
Qd
(
v`
))
`∈Z has Colorful Helly

Number 2d.

Our Theorem 8 shows that proving Conjecture 2
would also confirm Conjecture 1.
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