CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

High-Dimensional Axis-Aligned Bounding Box with Qutliers

Ali Mostafavi*

Abstract

Given n points in d-dimensional space and a parameter
z, we study the problem of finding the smallest axis-
aligned bounding box that covers at least n» — z points
and labels the remaining points as outliers. We consider
two measures for the size of bounding box: length of
the largest side and sum of lengths of the sides. We
give two algorithms for the former case: one that uses
at most 2z outliers but gives a bounding box which is at
most as large as the optimal bounding box and another
algorithm that uses at most z outliers but gives a box
than can be twice as large as the optimal box. We also
prove a matching lower bound for the approximation
factor of these algorithms.

For the sum of the sides objective, we give a bi-criteria
approximation algorithm that finds a box which is at
most O(logd) larger than the optimal box by removing
O(z) points.

1 Introduction

We study the classic problem of finding the smallest
axis-aligned box that contains a set of points in the set-
ting where we are allowed to ignore z points by labelling
them as outliers. The axis-aligned bounding box prob-
lem is extensively studied in literature because of its ap-
plications in pattern recognition [15], computer graphics
[18, 17] and VLSI design [14]. Aggarwal et al. [1] gave
an exact algorithm to minimize the perimeter for the
case where points are in two dimensional plane which
runs in O((n — z)?nlogn) time. Eppstein and Erickson
[8] showed that the time complexity can be improved
to O((n — 2)?n) in the planar case and also gave an
O((n— z)nlogn + (n— 2)¥?>~nlog® (n — z)) algorithm
for the Lo, objective (maximum side length) in higher
dimensions.

Segal and Kedem [16] gave an O(n + z(n — 2)?) algo-
rithm for minimizing area and perimeter in the plane
which is faster than previous ones when z is small.
They also extend their algorithm to 3-dimensional space
which runs in O(n + z(n — 2)? + (n — 2)®) time.

Ahn et al. [2] studied (p, z) box covering problem in
the plane: find p disjoint axis-aligned rectangles that

*Department of Computer Engineering, Shiraz University,
a.hr.mostafavi@gmail.com

TDepartment of Computer Engineering, Shiraz University,
ali@shirazu.ac.ir

Ali Hamzeh'

cover at least n — z points minimizing the area of the
largest box. They gave an O(n + z3) algorithm for the
case where p = 1 (which is the same as our problem).
They also show that this problem is NP-hard for general
p. Atanassov et al. [3] studied many geometric problems
with outliers and gave an O(n + z3) algorithm for min-
imum perimeter rectangle in the plane.

Kaplan et al. [10] developed algorithms for the min-
imum area and minimum perimeter rectangle with
outliers which run in O(n*°log®n) and O(n(n —
2)15log (n — z) log n) respectively.

de Berg et al. [7] considered the case where z is large
(n—z is small) and gave an O(n(n—z)?logn+nlog®n)
time algorithm. They also studied the “dual” problem
of covering the maximum number of points using a rect-
angle with area at most o and gave a randomized algo-
rithm with running time O(% log3 nlog %) which covers
at least (1 — €)x* points with high probability where «*
is the maximum number of points coverable with such
rectangle.

Guo and Li [9] presented an algorithm with running
time O(kz3+kzn+n?logn) for the minimum area rect-
angle in the plane where k denotes the number of points
on the first z + 1 convex layers. This algorithm can be
faster than previous ones when z and k are small.

Chan and Har-Peled [5] improved the running
time for both the area and perimeter to O(n(n —
z)log "~ log (n — z)) when points are in the two dimen-
sional plane, they also gave an algorithm which finds a
rectangle with area at most 1 4 € times the area of the
optimal rectangle and runs in O((1/€)3log (1/€)nlogn).

Bae [4] studied the related minimum width cuboidal
shell problem with outliers where cuboidal shell is de-
fined as the area between a cube and its inward offset.
They give an algorithm with running time O(z2n).

In this paper, we present the first polynomial-time
bi-criteria approximation algorithms for axis-aligned
bounding box with outliers in high dimensional spaces.
An («, f)-approximation algorithm for axis aligned
bounding box is one that achieves an objective value
at most « times the optimal value by removing at most
Bz outliers. We consider two objectives: the maximum
side length of the bounding box (L) and the sum of
the side lengths of the bounding box (L) which reduces
to perimeter in 2-dimensional case.

e For the L., objective, we give (1,2) and (2,1)-
approximation algorithms. Moreover, we prove ap-

34" Canadian Conference on Computational Geometry, 2022

proximating the objective function with a factor
better than 2 is NP-hard if we are not allowed to
use more than z outliers.

e For the L; objective, we give a (O(logd),O(1))-
approximation algorithm.

2 Definitions and Terminology

Let P C R? be a set of points in d-dimensional euclidean
space and let n = |P| be the number of points. Let [;(P)
denote the extent of P in the j-th dimension, that is:

1.(P) = .
i(P) Iax p; — g

In this paper, we explore the following extent measures
of the point set:

e Maximum side length of the axis-aligned bounding

box:
fx ()

i

=t

LOO(P) =

<

e The sum of side lengths of the axis-aligned bound-
ing box:

Li(P) = _1;(P)

j=1

Let f(z) be any function on subsets of P, the problem
of minimizing f with z outliers is to find z points in P
such that removal of these points minimizes f, that is:

Z* = argmin f(P\ 2)
ZCP,|Z|=2

we denote the optimal value of this function by
OPT = f(P \ Z*) and the optimal set of points
by P* = P\ Z*. For convenience we denote
the optimal outlier points for the L., objective by
Z5,(P,z) = argmingcpz—. Loo(P\ Z) and the op-
timal non-outlier points are P%(P,z) = P\ ZX (P, z)
and the optimal objective value is LY (P, z) = Lo (PL).
Z{(P, z), Pf(P,z) and Lj(P, z) are defined analogously.
For brevity, we will omit (P, z) when their value is obvi-
ous from the context (for example instead of Li (P, z)
we just write LY,).

3 Approximating L., in High Dimensions

In this section we give the following results for the
minimum-L., axis-aligned bounding box with outliers:

1. In subsection 3.1 we give an approximation algo-
rithm that labels 2z points as outliers but guaran-
tees that the L., value of the remaining points is
less than L% (P, z)

2. In subsection 3.2 we give an approximation algo-
rithm that labels at most z points as outliers and
guarantees that the L., value of the remaining
points is at most 2L%_ (P, z)

3. In subsection 3.3 we prove that under some reason-
able assumptions both above approximation factors
are optimal.

3.1 A (1,2)-approximation Algorithm

We repeatedly find the dimension with maximum side
length and remove two extreme points along this dimen-
sion. We claim that Algorithm 1 achieves the optimal
value of L, and removes at most 2z points.

Algorithm 1 Approximation Algorithm for L, in High
Dimensions

1: procedure L.,-APPROXIMATION](P)

2: forv+ 1..z2do
d; = argmax?_, 1;(P)

min , max

pMt, pit®* = extreme points of P in d;
P P\ (i)

(3

return P

Lemma 1 Let Z; = {p™™, p"®*} be the two points re-
moved in the i-th iteration of the for loop in Line 2, then

one of the following holds:
o Z;NZE #£0
o Loo(P) < L%,

Proof. Let P be the optimal set of points with their
z outliers removed. Suppose Z; N Z%, = (), therefore
Z; C PX and since Lo, is a monotone function (that is,
it can never increase by deleting points), we have:

O

Theorem 2 The points returned by Algorithm 1
achieve at most the optimal value of Los.

Proof. If at any point during Algorithm 1 we have
Z;NZ% =), then by Lemma 1 we have already achieved
the optimum value (and we will never increase this value
because L is a monotone function of points). Other-
wise we have Vi : Z, N Z%, # 0 and Vi,j : Z; N Z; = .
Therefore for each ¢ we have removed at least one new
point from Z7%_, so after z iterations we have removed
all z points from Z7 .

O

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

The loop at line 2 is executed z times and each ex-
ecution takes O(nd) time so the overall runtime of the
algorithm is O(ndz). This runtime can be improved
when dz is o(n) by exploiting the following observation:

Observation 1 The extreme point of Py, with the low-
est (highest) coordinate in j-th dimension is among the
z+ 1 extreme points of P with lowest (highest) j-th co-
ordinate.

Proof. This follows trivially from the fact that we have
at most z outliers, therefore one of the z + 1 most ex-
treme points must be in the optimal solution. O

Therefore, instead of considering all n points, we can
consider only the points which are among the z+1 most
extreme points in some dimension. There are at most
2d(z + 1) such points and they can be found in O(nd)
time using standard selection algorithms [6]. Running
the algorithm only on these points reduces the overall
runtime to O(nd + d?z2).

3.2 A (2,1)-approximation Algorithm

Observation 1 implies that if a point is not among the
2dz most extreme points, it can not be an outlier and
therefore it must be included in the optimal box. Ad-
ditionally, any cube with side length [can be covered
with a cube with side length 2! centered at any point
inside the cube. Therefore if all except z points can be
covered with a cube of maximum side length [, then all
but z points can be covered with a cube centered at any
non-outlier point with side length 2{. This suggests Al-
gorithm 2 for the case when n > 2dz. We know that
the point ¢ found in line 3 can not be an outlier, and
therefore, we must be able to cover n — z points with a
cube centered on ¢ and length at most 2L7_.

Algorithm 2 (2,1)-approximation Algorithm for L
in High Dimensions
1: procedure L.,-APPROXIMATION2(P)
2: Let P’ be the points of P with 2dz most extreme
points in each dimension deleted
3: Let ¢ be an arbitrary point in P’
4: Find the smallest [such that a cube with side
length [centered at ¢ can cover at least n — z points
in P
5: Label all the points not covered in the cube
found in line 4 as outliers and return the cube as
the solution

Line 2 can be performed in O(nd) time using selection
algorithms. Line 4 can be performed in O(ndlogn) time
by performing a binary search on the distance of ¢ to
the points in P. So the overall runtime of Algorithm 2
is O(ndlogn).

3.3 Hardness of Approximation

We show that unless P = NP, we can not approximate
the value of L (P, z) with a factor better than 2 when
no approximation on z is allowed. This proves that
Algorithm 2 is optimal and justifies our approximation
on z in Algorithm 1.

We convert an instance of VERTEX-COVER [11] prob-
lem to an instance of minimum L., axis-aligned bound-
ing box with outliers such that the optimal value is 1 if
the graph has a vertex cover of size k and is 2 otherwise
(which means an approximation algorithm with a fac-
tor better than 2 can distinguish between these cases).
Let (V, E,k) be an instance of VERTEX-COVER prob-
lem where V is the set of nodes and E C V x V is
the set of edges. Our goal is to determine if the graph
has a vertex cover of size at most k. We arbitrarily as-
sign directions to edges of |E| and convert each vertex
into a point in RII. Note that there is a dimension
corresponding to each edge in the graph, let d. denote
the dimension corresponding to edge e. Let p, denote
the point corresponding to vertex v € V. We use the
following rule to determine p,:

-1, ife=(v,x%).
po(de) =<1, ife=(x,v).
0, otherwise.

Theorem 3 Let P = {p,|v € V}. Then:

1, o (V, E) has a vertex cover of size k.

*
Loe(P k) {2, otherwise.
Proof. Suppose (V, E) has a vertex cover C C V where
|C|= k. We label the points corresponding to vertices in
C as outliers, let P’ = P\ {p,|v € C} be the remaining
points. There are exactly two points in P with non-zero
value for each edge and since we know we have removed
at least one of the endpoints of each edge in P’, there
is at most one point in P’ with non-zero value in each
dimension. Therefore the points of P’ can be covered
with a box with maximum side length of 1.

Conversely, we can convert any solution where
L (P,z) = 1 to a vertex cover by selecting the ver-
tices corresponding to outliers in P which means that
if (V, E) doesn’t have a vertex cover with size k then
L (P,k) > 1, but the only other possible value for
L (P, k) is 2. O

Assuming that unique games conjecture [12] is true,
it is impossible to approximate VERTEX-COVER with a
factor better than two [13] and we can strengthen The-
orem 3 to claim that no (a, §)-approximation is possi-
ble where v and 8 are simultaneously less than 2. This
proves that both Algorithms 1 and 2 are pareto-optimal.

34" Canadian Conference on Computational Geometry, 2022

4 Approximating L, in High Dimensions

In this section we develop bi-criteria approximation al-
gorithms for the L; objective. First, we warm up by
developing (d,2) and (1,2d)-approximation algorithms
in subsections 4.1 and 4.2 respectively. Then in subsec-
tion 4.3 we show how to combine the ideas of these algo-
rithms to develop an algorithm that achieves a reason-
able approximation factor both for the objective value
and number of outliers.

4.1 A (d,2)-approximation Algorithm

We claim that Algorithm 1 already gives us a (d,2) ap-
proximation factor.

Theorem 4 Algorithm 1 is a (d,2)-approzimation al-
gorithm for L.

Proof. Let P and P; be the optimal set of points
(with z outliers removed) for L, and L; respectively
and Py be the result of applying Algorithm 1 on P.
We have:

4.2 A (1,2d)-approximation Algorithm

This algorithm is very similar to Algorithm 1, however,
instead of deleting the extreme points just in the largest
dimension, we delete all 2d extreme points in all dimen-
sions.

Algorithm 3 Simple Approximation Algorithm for L
in High Dimensions

1. procedure L;-APPROXIMATION(P)

2: fori <+ 1..z do

3: Z; = at most 2d extreme points of P in each
dimension

4: P+ P\ Z

5: return P

We omit the full proof of correctness and approxima-
tion factor because it is essentially the same as the proof

of Theorem 2. The main idea is that at each step, either
we have already achieved optimality or at least one of
the deleted points is in Z7.

4.3 A Better Approximation Algorithm

In this section, we assume that the optimal value
OPT = Lj(P,z) is known. We will show how to re-
move this assumption in subsection 4.3.1. The main
idea is the same as Algorithm 3, however, instead of
removing the two extreme points of all dimensions, we
only consider the “large” dimensions and ignore “small”
dimensions by proving that their contribution to the so-
lution can not be too large (Theorem 9). And since we
know the value of OPT, we know that there can not be
too many “large” dimensions in the optimal solution,
therefore we know that a good portion of the deleted
points are actual outliers (Theorem 8).

Procedure PRUNE is called IOgﬁd times. Each run

of PRUNE takes O(n?d) time so the overall runtime of
Algorithm 4 is O(nleog% d).

Algorithm 4 Approximation Algorithm for L, in High
Dimensions
1: procedure PRUNE(P, D)

2: n < |D|

3. while [D[> 29" do

4: for d in D do

5: if 14(P) > 2°FT then

6: Remove the two extreme points of P
in dimension d

7 else

8: D« D\ {d}

9: return P, D

10: procedure L;- APPROXIMATION(P)
11: D=1{1,2,..,d}

12: for i < 1... [log% d—‘ do
13: P,D < PrUNE(P, D)
14: return P

Lemma 5 Let D,|D|> 0 be a set of dimensions and
let D' be the set of remaining dimensions after running

PRUNE(P, D) then B < 1<,

Proof. Line 3 removes dimensions until this condition
is satisfied (we know that it can be eventually satisfied
because we can reduce the value to 0 by removing all
points). O

Corollary 6 Let D; be D after the i-th iteration of the
loop at line 12. Then |D;|< (1£€)%d.

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Proof. |Dy| is d and for each ¢ we have |D;i1|<
%|D,| By multiplying all these inequalities we get:

1 ‘ 1 ‘
umz(+ﬂ|m|(”)d
2 2

Lemma 7 Let Pf = P\ Z] be the optimal set of points
and C = {j : 1;(Py) > 222} Then |C|< 2.

O

Proof.

d
OPT = "1;(P}) > Y L;(P)
j=1 jeC
20PT 20PT
> =
>3 == =

jeC

20PT

OPT > [C| =~ = _ >|C|
n 2

O

Theorem 8 Algorithm J removes at most 4(e~1z+2d)
points.

Proof. Let Z; be the points removed the i-th time
PRUNE was called, let D; be the input dimensions to
this iteration and let a; be the number of times while
loop in Line 3 was executed. We have:

which means:

Zi|-2\Di|
2[D;| —

Now, for the first «; — 1 iterations, we are sure that
there are at least % dimensions remaining in D
which we call active dimensions (this might not be true
for the last iteration because we remove points inside
the loop). On the other hand, Lemma 7 tells us that
there are at most @ dimensions in the optimal solution

20PT
|D;| ~

least % — % = @ of these dimensions are
not optimal (the extent of points in these dimensions
is still larger than the extent of optimal points in this

dimension) which means at each non-final iteration we
el Dil
2

This means that at

whose extent is more than

remove at least points from Zj. Thus we have:

€|Di| _ |Zil=2Di| e| Di| _ e(1Zi|=2|Dil)

ZNZ7 1> (o;—1
| i1z (oi=1)—= > 2D, 2 1

therefore 4¢ 1| Z;NZ}|+2|D;|> | Z;|. Now we can bound
the number of points removed in all iterations (we use I

to denote the number of iterations which is {log = dw):

I I
1z <Y 47 Zin ZT |42\ Dl

i=1 =1
I I
=> 4 ZinZi[+2) |Di
i=1 i=1

we have
I

Yo 1zinzi| <17]

i=1
because the Z;s are disjoint so the first sum is less than
4¢'z. For the second sum we apply Corollary 6 and
sum the geometric series to get:

I I '3
1+e€ 2d
D;| < d< —— < 4d
Spis Y () a7 <

we assumed € < % for the last inequality. Putting this
all together we have:

I
> 1Zi| < 4z + 2d)

i=1
]

Theorem 9 The points returned by Algorithm
achieve an Ly value of at most OPT(2 {log% d_‘)

Proof. Each time PRUNE is called the deactivated di-
mensions have extent at most 2‘%P|T and there are at
most | D;| of them. So the total contribution of these di-

mensions to the objective is at most Q‘ODP_‘T |D;|=20PT.

And PRUNE is called at most [log 2 d—‘ times after

which there remains no active dimensions.

4.3.1 How to Find OPT ?

In Section 4.3 we assumed we knew the value of OPT.
Here we will show how to remove this assumption. Let
L and U be a lower bound and an upper bound on the
value of OPT. For example U can be L;(P) and L can
be é times the result of running Algorithm 1 on P. Let
¢ = % Run Algorithm 4 in parallel log; , 5 ¢ times each
time with a guess of L(1+4)* for the value of OPT. For
one of these guesses we have OPT < L(1+6)" < (1 +
0)OPT and for that guess Algorithm 4 is guaranteed to

succeed with a value of at most 2(1+9) [log% d—‘ OPT.

While this method probably works well in most prac-
tical datasets, one can design adversarial datasets where
the value of ¢ is unbounded. Here we will describe a
method to find bounds whose ratio is guaranteed to be
a polynomial. Let Py be the result of applying Algo-
rithm 1 on P and W = Lo (Pw). Let L% (P,z) and

34" Canadian Conference on Computational Geometry, 2022

Li (P, z) be the optimal value of Lo, and L; objectives
with z outliers on point set P. We have:

W < L (P,z) < Li(P,z) (1)

On the other hand, applying Algorithm 1 removes at
most 2z points, so Li(Py) is an upper bound on the
value of Li(P,2z).

d
Li(P,22) < Ly(Pw) = > _1;(Pw)
j=1 (2)

< dm‘éfzj(PW) = dW
j:

We set L = W,U = dW and we use 2z’ = 2z as the
number of outliers in Algorithm 4.
u daw

p=7 =7 =d= log,,5¢=0(5""logd)

Equation 2 ensures that our algorithm succeeds for
some estimate of OPT and Equation 1 ensures that at
least some of our estimates are less than OPT. So ei-
ther OPT is greater than dW or there is some estimate
between OPT and (1 4+ §)OPT. Either way, our algo-
rithm succeeds for these estimates with approximation
factor given in Theorem 9. This algorithm blows up our
approximation factor for the number of outliers at most
by a factor of two (from 4(e~'z + 2d) to 8(e 1z + d)).

5 Conclusion

We presented simple bi-criteria approximation algo-
rithms for minimum axis-aligned bounding box in high-
dimensional euclidean spaces for the maximum side
length and sum of side lengths objectives. While this
problem has been previously studied in low-dimensional
settings, as far as we are aware this is the first work
that studies this problem in high-dimensional euclidean
spaces. We proved that our algorithms for the max-
imum side length objective are pareto-optimal under
some reasonable assumptions.

We plan on (i) improving the approximation factors
for the sum of side length algorithm, (ii) prove match-
ing lower bounds for sum of side length objective, and
(iii) studying other high-dimensional problems in the
presence of outliers.

References

[1] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Sub-
hash Suri. Finding k points with minimum diameter
and related problems. Journal of Algorithms, 12(1):38—
56, 1991.

[2] Hee-Kap Ahn, Sang Won Bae, Erik D Demaine, Mar-
tin L. Demaine, Sang-Sub Kim, Matias Korman, Iris
Reinbacher, and Wanbin Son. Covering points by dis-
joint boxes with outliers. Computational Geometry,
44(3):178-190, 2011.

[3] Rossen Atanassov, Prosenjit Bose, Mathieu Couture,
Anil Maheshwari, Pat Morin, Michel Paquette, Michiel
Smid, and Stefanie Wuhrer. Algorithms for optimal out-
lier removal. Journal of Discrete Algorithms, 7(2):239—
248, 2009.

[4] Sang Won Bae. Minimum-width cuboidal shells with
outliers. Journal of Computing Science and Engineer-
ing, 14(1):1-8, 2020.

[5] Timothy M. Chan and Sariel Har-Peled. Smallest k-
enclosing rectangle revisited. Discrete and Computa-
tional Geometry, 66(2):769-791, 2021.

[6] Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. Introduction to algorithms.
MIT press, 2009.

[7] Mark De Berg, Sergio Cabello, Otfried Cheong, David
Eppstein, and Christian Knauer. Covering many points
with a small-area box. Journal of Computational Ge-
ometry, 10(1):207-222, 2019.

[8] David Eppstein and Jeff Erickson. Iterated nearest
neighbors and finding minimal polytopes. Discrete €
Computational Geometry, 11(3):321-350, 1994.

[9] Zhengyang Guo and Yi Li. Minimum enclosing parallel-
ogram with outliers. arXiv preprint arXiv:20053.01900,
2020.

[10] Haim Kaplan, Sasanka Roy, and Micha Sharir. Finding
axis-parallel rectangles of fixed perimeter or area con-
taining the largest number of points. Computational
Geometry: Theory and Applications, 81(52):1-11, 2019.

[11] Richard M Karp. Reducibility among combinatorial
problems. In Complexity of computer computations,
pages 85-103. Springer, 1972.

[12] Subhash Khot. On the power of unique 2-prover 1-
round games. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 767—
775, 2002.

[13] Subhash Khot and Oded Regev. Vertex cover might be
hard to approximate to within 2- €. Journal of Com-
puter and System Sciences, 74(3):335-349, 2008.

[14] Maharaj Mukherjee and Kanad Chakraborty. A
polynomial-time optimization algorithm for a rectilin-
ear partitioning problem with applications in VLSI
design automation. Information Processing Letters,
83(1):41-48, 2002.

[15] Sung Hee Park and Jae-young Kim. Unsupervised Clus-
tering with Axis-Aligned Rectangular Regions. http:
//cs229.stanford.edu/proj2009/ParkKim. pdf.

[16] Michael Segal and Klara Kedem. Enclosing k points in
the smallest axis parallel rectangle. Information Pro-
cessing Letters, 65(2):95-99, 1998.

[17] Daiki Takeshita. AABB pruning: Pruning of neighbor-
hood search for uniform grid using axis-aligned bound-
ing box. The Journal of the Society for Art and Science,
19(1):1-8, 2020.

[18] Bruce Walter, Kavita Bala, Milind Kulkarni, and Ke-
shav Pingali. Fast agglomerative clustering for render-
ing. RT’08 - IEEE/EG Symposium on Interactive Ray
Tracing 2008, Proceedings, pages 81-86, 2008.

http://cs229.stanford.edu/proj2009/ParkKim.pdf
http://cs229.stanford.edu/proj2009/ParkKim.pdf

	Introduction
	Definitions and Terminology
	Approximating L in High Dimensions
	A (1,2)-approximation Algorithm
	A (2,1)-approximation Algorithm
	Hardness of Approximation

	Approximating L1 in High Dimensions
	A (d,2)-approximation Algorithm
	A (1,2d)-approximation Algorithm
	A Better Approximation Algorithm
	How to Find OPT ?

	Conclusion

