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Efficient Predicate Evaluation using Statistical Degeneracy Detection

Victor Milenkovic*

Abstract

Computational geometry algorithms branch on the signs
of predicates. Evaluating degenerate (zero sign) pred-
icates is costly. Degeneracy is common for predicates
whose arguments have common antecedents. Prior de-
generacy detection techniques are slow, especially on
predicates that involve algebraic numbers. We present
statistical degeneracy detection (SDD) algorithms. Ra-
tional predicates are evaluated modulo randomly se-
lected primes. Algebraic predicates are evaluated on
randomly perturbed inputs. We analyze the failure
rates under statistical assumptions. The algorithms are
incorporated into an exact geometric computation li-
brary. Extensive testing shows that the library is reli-
able and fast. We also give an algorithm that reduces
algebraic degeneracy detection to rational degeneracy
detection without perturbation. This algorithm is much
slower than the perturbation algorithm yet is far faster
than prior work even when rational predicates are eval-
uated deterministically.

1 Introduction

We present research on the implementation of compu-
tational geometry algorithms. Implementations employ
floating point arithmetic, whereas algorithms are ex-
pressed using real arithmetic. Although floating point
is very accurate, even a tiny numerical error can cause
a logical operator to return an incorrect Boolean value,
which can cause a program crash or an unbounded error
in the output. We follow the exact geometric computa-
tion (EGC) [25] strategy of ensuring accurate output by
implementing logical operators that are correct despite
numerical error.

A CG algorithm takes as input points or other geo-
metric objects with rational parameters (coordinates or
coefficients), expressed as ratios of integers or floating
point numbers. The algorithm branches on the signs,
> 0, =0, or < 0 of polynomial functions of parameters,
called predicates. For example, the sign of

turn(a, b, ¢) = (a —b) x (b—c) with u x v = ugvy —uyv,
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determine if abc turns left, goes straight, or turns right
at b. Algorithms also generate new parameters using ra-
tional functions on (antecedent) parameters or the zeros
of polynomials whose coefficients are rational functions
of parameters. The former is rational, such as the coor-
dinates of the intersection p of lines ab and cd, and the
latter is algebraic, such as the intersections of the circle
through b with center a with the line cd. Parameters
and the predicates on them are rational if all functions
in their derivation are rational; otherwise, they are al-
gebraic.

In general, it is inexpensive to determine the sign of a
nonzero predicate. For example, double precision float-
ing point interval arithmetic usually results in an in-
terval that does not contain zero, and hence the sign
is known. Occasionally, additional precision is needed,
such as using the MPFR library (mpfr.org). However,
we find the additional cost is modest, up to 20%.

The situation for degenerate (zero) predicates is much
direr. For rational predicates, it is necessary to use ex-
act rational arithmetic using a library such as GMP
(gmplib.org), and this can be much more expensive
than double precision interval arithmetic. The gen-
eral technique for algebraic predicates is root separa-
tion bounds, and these are very pessimistic, requiring
many bits of precision. Exact rational arithmetic can
sometimes be practical, but root separation bounds are
almost never practical.

Degeneracy resulting from input in special position,
such as collinear a, b, ¢ can be eliminated by input per-
turbation: adding a small random quantity to each in-
put parameter [12]. However, the cost of rational arith-
metic for input degeneracies is not too high, and special
position rarely results in algebraic degeneracy.

Derived parameters that are related by shared an-
tecedents can also cause predicates to be degenerate.
For example, consider line segments aiby, azbs, azbs,
and cd whose endpoint coordinates are input param-
eters. If cd intersects the other segments at py, po,
and ps, these points are collinear, turn(py,p2,p3) = 0,
and this degeneracy is impervious to input perturbation.
The coordinates of ¢ and d are common antecedents of
p1, p2, and ps in a manner that makes turn(py, p2, p3)
identically zero as a rational function of the coordinates
of the eight input points. We call this type of degen-
erate predicate an identity because it is identically zero
on an open set in the input parameter space, whereas a
special position is zero on a measure zero set.
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For a derivation depth of one or perhaps two, it is pos-
sible to analyze the identities and detect them by logic.
For example, we know the pi, p2, p3 in the above exam-
ple will be collinear without exact rational evaluation.
However, when multiple operations are cascaded, the
number of types of identities rises exponentially with
the derivation depth, and logic analysis becomes im-
practical. Unfortunately, the bit-complexity hence the
cost of exact rational arithmetic or root separation also
grows much greater.

We believe this effect often prevents the practical use
of CG. Individual operations are efficient, but identities
cause multiple consecutive operations to be very ineffi-
cient.

1.1 Contribution

We  propose  statistical  degeneracy  detection
(SDD) to detect degenerate predicates with-
out using exact rational arithmetic or separa-
tion bounds. We present three SDD algorithms
and provide a library implementation at https:
//github.com/Robust-Geometric-Computation.

Each algorithm outputs an estimated failure (false
degeneracy) probability based on statistical assump-
tions. This approach allows efficient EGC on cascaded
geometric operations. The estimated probabilities can
be set so low as to make failure impossible in practice.

We provide the first probabilistic algorithms for de-
generacy detection for both the rational and algebraic
case, and we introduce the concept of statistical degen-
eracy detection. Prior work [10] uses a statistical as-
sumption but does not provide an estimate of the prob-
ability of failure.

The first algorithm (Sec. 2) detects degenerate ratio-
nal predicates by evaluating ambiguous (interval arith-
metic interval contains zero) predicates modulo k ran-
dom primes. We prove a worst-case bound on the prob-
ability of failure. However, this probabilistic bound re-
quires having a bound b on the bit-complexity, but can-
cellation (of common factors of the numerators and de-
nominators) greatly and unpredictably reduces b. Even
given b, the probability bound is very pessimistic. We
estimate the probability using a statistical assumption:
nonzero predicates are zero modulo a random prime at
the same rate as all nonzero expressions. In our tests,
the estimated failure probability is always negligible for
k=2.

The second algorithm (Sec. 3) uses polynomial quo-
tient rings to reduce an algebraic predicate to multiple
rational predicates without the use of exact arithmetic
or root separation bounds. The rational predicates can
be evaluated using the first algorithm. It is much more
efficient than root-separation-based methods but is lim-
ited to a small number of arguments.

The third algorithm (Sec. 4) uses the observation that

identities remain zero after input perturbation, but all
other expressions are likely to change their values. It
perturbs its input to eliminate input (special position)
degeneracies with high probability. It applies a second
perturbation (provisionally) to predicates that remain
ambiguous at h bits of precision. If an expression re-
mains ambiguous, it reports an identity. It uses a mea-
sure on nonzero, nonidentity expressions to report a
probability of failure, under the statistical assumption
that this measure is the same for nonzero predicates.
In our tests, the estimated failure probability is always
negligible for h = 265.

1.2 Prior work

EGC comprises exact geometry kernels and number
types. An exact geometry kernel supports a set of predi-
cates for a class of objects, possibly with a limited capac-
ity for defining new objects and predicates. The canon-
ical examples are the CGAL [8] and Leda [15] kernels
for rational operations on points. CGAL also provides
an algebraic kernel for zeros of univariate polynomials.
Two zeros can be ordered, but other predicates involv-
ing zeros are not supported. An exact number type sup-
ports a set of operations on a subset of the real numbers.
The canonical example is the Leda real type for general
expressions involving rational operations, radicals, and
zeros of polynomials [7]. A number type is more flex-
ible and easier to use than a kernel. But a kernel can
model entire objects, rather than their parameters, and
can exploit domain-specific algorithms.

Geometry kernels and number types are built from
a common set of tools: interval arithmetic, arbitrary
size integer arithmetic, arbitrary precision floating point
arithmetic, and separation bounds.

Interval arithmetic [19] uses floating point arithmetic
to compute an interval of floating point numbers that
contains the value of an expression. EGC uses interval
arithmetic in floating point filtering [5]: the sign of a
predicate is determined when its interval excludes zero.

Arbitrary size integer arithmetic libraries, such as
GMP (gmplib.org), are used to evaluate rational pred-
icates. The complexity of a b-bit operation is O(blogb).
The bit complexity of a rational predicate can be ex-
ponential in its derivation depth but is much lower in
practice because common factors are canceled. Adap-
tive precision evaluation [22] is faster than GMP style
arithmetic but is restricted to predicates in input pa-
rameters.

Rational predicates can also be evaluated using mod-
ular arithmetic. A predicate of bit complexity b requires
b/k k-bit moduli. Degeneracy can be determined by ver-
ifying that all the residues are zero, at a cost of O(b).
Computing the sign requires Chinese remaindering at a
worst-case cost of O(b?) and an expected cost of O(b)
[6]. This paper proposes a probabilistic algorithm, but
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it depends on on a lemma [10] (Lemma 3.1) that makes
the statistical assumption that the value of a polynomial
modulo an integer is uniformly distributed. Despite the
log factor savings for modular arithmetic in theory, ar-
bitrary size integer arithmetic is most used in practice.

Degenerate algebraic predicates can be detected using
separation bounds. A separation bound S for a pred-
icate e is a positive number such that e # 0 implies
le] > 6. Li, Pion, and Yap [13] survey separation bound
computation and Emiris, Mourrain, and Tsigaridas [9)
present the state of the art. The LEDA exact number
type [7] evaluates a predicate with interval arithmetic
and increases the floating point precision until the in-
terval excludes zero or the interval width is less than a
separation bound. The separation bound technique is
rarely practical because the bounds shrink rapidly as the
number and degree of the algebraic numbers increase.

Some special cases are handled without separation
bounds. Berberich et al [3] present an arrangement al-
gorithm for plane algebraic curves using only symbolic
methods. It includes univariate and bivariate polyno-
mial support that is faster than the CGAL algebraic
kernel. Masterjohn et al [14] present an arrangement
algorithm that uses our fixed § perturbation framework
(below) to avoid degeneracies. Neither is subject to
identities. Blomer [4] provides a probabilistic algorithm
for rational expression whose leaves are roots of integers.

Halperin [12] pioneered input perturbation for pre-
venting special position degeneracy. Each input param-
eter of an algorithm is perturbed by a value chosen uni-
formly in [—¢, 0]. The algorithm is run on the perturbed
input. The ¢ is chosen so that floating point filtering
succeeds with high probability. If every instance suc-
ceeds for a run of the algorithm, the output is correct
for the perturbed input, hence is correct with backward
error § for the original input. Otherwise, the algorithm
is rerun with a different perturbation. This approach
does not address identities. Moreover, it can require
values of § that exceed the error bounds of applications.

We [18] developed a perturbation algorithm that uses
a fixed, user-specified §. We evaluate predicates using
arbitrary precision interval arithmetic [11] and increase
the precision until the interval excludes zero. We abort
the algorithm when the precision reaches a threshold
that is high enough that only identities reach it. When
this happens, we devise ad hoc code for that identity.

We [17] present an identity detection algorithm for
all predicates involving contacts between polyhedrons
with four degrees of freedom. These predicates can be
expressed as g(r) where r if a zero of f, and both f
and ¢ are univariate polynomials whose coefficients are
multivariate polynomials in the input parameters. The
algorithm uses a precomputed table of all polynomials
f and g, up to isomorphism, and their multivariate fac-
torizations.

2 SDD algorithm for rational predicates

The probabilistic degeneracy detection algorithm for an
ambiguous rational predicate evaluates it modulo a ran-
dom 32-bit prime p. Each input parameter is converted
from a double to the form a x 2°, with a and b integers,
then this expression is evaluated modulo p. Modular ad-
dition and multiplication are 64-bit machine operations
followed by evaluation modulo p. Modular division uses
the extended Euclidean algorithm. If any divisor is di-
visible by p, the test is rerun with a new random prime.
We repeat the test k times and declare the predicate
degenerate if the residue is zero each time.

We bound the probability that the algorithm will re-
port a false degeneracy for a predicate e whose bit com-
plexity is bounded by b. Let n denote the number of 32-
bit primes. At most b/31 primes divide e because they
are larger than 23!, so the probability that a given prime
divides e is at most ¢t = b/(31n). The probability that k
primes divide e is at most t* and so a maximum failure
probability of r is ensured by setting k = logr/logt.
Unfortunately, there is no general method to determine
a tight bound on b.

The SDD algorithm estimates the actual false degen-
eracy rate under the assumption that an ambiguous
predicate and its subexpressions are equally likely to
fail the test. To get this estimate, we set ¢t equal to 1/k
times the fraction of the unambiguous (hence nonzero)
subexpressions that are zero modulo one of the k primes.

3 Extension to algebraic predicates using quotient
rings

We extend rational degeneracy detection to algebraic
predicates. Consider a predicate polynomial e(x) eval-
uated at a simple zero r of f(z), where e and f have
rational coefficients. We compute g = ged(e, f), using
rational degeneracy detection to detect if the leading co-
efficient of a remainder is zero and hence the remainder
has lower degree than the generic case. Since f(r) =0,
x—r | f and so e(r) = 0 if and only if g(r) = 0. Let
h=f/g. Ifg(r)=0,x—r|g,s0x—rth,since r is
a simple zero of f, and h(r) #0. If h(r) =0, x — r | h,
sox —r1{gand g(r) # 0. Hence, either g(r) = 0 and
h(r) # 0 or vice versa. We evaluate both expressions in
interval arithmetic and increase the precision until one
interval excludes zero. If h(r) # 0, e(r) is degenerate.
This technique detects an algebraic zero without the use
of separation bounds or exact arithmetic.

We use quotient rings to extend this algorithm to
predicates that have multiple algebraic parameters.
Consider a predicate e(z1,z2) evaluated on simple ze-
ros r1 and ro of fi(z1) and fo(xa). Let R; denote the
quotient ring Q[x1]/f1 of polynomials in 1 modulo f.
Convert e to Ri[zs] by expressing it as e = >, px(z1)25
then replacing each pj by its remainder when divided
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by fi. Apply the above algorithm to e and f;, which
is trivially in Rj[xs], with g = ged(e, f2) and h = fa/g
in Ry[zz]. Either h(r1,72) = 0 or g(r1,r2) = 0, and
e(ry,m2) is degenerate if h(ri,72) # 0. In the gen-
eral case, e(z1,...,2,) is evaluated on simple zeros
71y« yTm Of fi(z1),..., fm(zm). Let Ry = Q and
R; = Ri_1[z;]/fi(z;) for i« > 0. Convert e and f,, to
elements of R,,_1[x,,] and apply the above algorithm,
with e(ry,...,7m,) degenerate if h(ry,...,ry) # 0.

Implementing this algorithm requires zero detection
and multiplicative inverse computation in R;. These
use rational degeneracy detection (Sec. 2) for Ry = Q.
For i > 0, an element a(x;) € R; is represented by the
remainder of a when divided by f; in R;_1[x;]. Zero
leading coefficients are detected in R;_1, and a is zero
when all the coefficients are zero. The inverse of a is
computed with the extended Euclidean algorithm on
R;_1[x;]. We detect a zero divisor (that has no inverse)
when g = ged(a, f;) has nonzero degree. In that case, we
calculate h = f; /g, determine whether g or h is nonzero
on ry,...,r;, replace f; with the other, and restart the
degeneracy detection algorithm for e.

The number of restarts is at most total degree of
fi minus total degree of r;, i = 1,...,m. To prove
correctness, we need to show that one of g and h
is nonzero on 71,...,7; and the other is zero. Con-
sider fi(r1,...,ri—1)(®;) € Rlz;] that is the current
fi(x;) with rq1,...,7;_1 substituted in its coefficients.
The invariant is that f;(r1,...,7-1)(z;) is divisible by
(x — r;) but not (x — r;)%. This is true for the initial
fio I fi(zi) = g(@i)h(x;), then fi(ry,...,ric1)(zi) =
g(r1y. ..y rim1) (i) h(r1, ..., ri—1)(2;), one factor is di-
visible by x — 7;, and neither factor is divisible by
(x — 7;)? due to the uniqueness of factorization. The
factor that is not divisible by x — r; is nonzero on r;.

The algorithm is impractical for large values of m
because it requires d?™ operations for fi,..., fm of to-
tal degree d. It is difficult to interface with computa-
tional geometry algorithms because predicates must be
expressed as polynomials in the m algebraic parameters.

4 Perturbation-based SDD algorithm for algebraic
predicates

The exponential complexity of the quotient-ring-based
SDD algorithm leads us to prefer a perturbation-based
algorithm. This algorithm cannot detect special posi-
tion degeneracy, so we prevent it with an input pertur-
bation. We classify an ambiguous predicate as an iden-
tity if it remains ambiguous when the precision of the
interval arithmetic is increased and when it is evaluated
on a second perturbed input. A nondegenerate predi-
cate is unlikely to remain ambiguous in either case.
The user selects the perturbation size § and the iden-
tity detection control parameter h with default values

§d = 272" =~ 107® and h = 212. The former is chosen
based on the accuracy needed for the application, and
the latter can be increased if the SDD failure probability
estimate is too high. The algorithm employs two inter-
nal parameters: the perturbation precision b and the
secondary perturbation size s, with initial values b = 26
and s = §. Each input parameter is perturbed by a b-
bit number that is uniformly distributed in [—4, §]. For
the initial b and the default §, perturbing an input is
equivalent to randomizing the lower half of its mantissa.
Smaller ¢ or larger b would require expressing each input
as a sum of doubles.

The algorithm runs the geometric computation on
the perturbed input p. If an algebraic predicate e(p)
is ambiguous in floating point interval arithmetic, it
is reevaluated in h-bit interval arithmetic. If it is still
ambiguous, the algorithm selects a second perturbation
q = p + rv. Each coordinate of the vector v is drawn
uniformly from the set of b-bit numbers in [—1,1]. The
scalar r is initialized to s then is divided by ten until the
isolating intervals of the algebraic numbers, which were
computed at p, are also isolating at ¢q. The algorithm
reports an identity when e(q) is ambiguous in h-bit in-
terval arithmetic. Otherwise, it computes the sign of
e(p) using I-bit interval arithmetic, starting with [ = 2h
and doubling [ until the interval excludes zero.

This algorithm requires that the initial b-bit pertur-
bation eliminates all degenerate non-identity predicates;
otherwise, [ would increase without bound. In practice,
we put an upper bound m = 424 on [ to prevent an in-
finite loop. If that bound were ever reached, we would
restart with a different perturbation. If the bound were
reached yet again, we would double the default values
of b and m.

The algorithm cannot assign a nonzero sign to an
identity. We bound the probability of a false identity
under the assumption that e(t) is analytic on [0, r]. This
assumption can be guaranteed when the algebraic num-
bers in e are zeros of polynomials whose coefficients are
rational parameters: when applying the Descartes rule
of signs, verify that these coefficients have constant signs
on [0,7]. We know of no practical test for polynomials
with algebraic coefficients. We discuss this issue further
in Sec. 6.

Suppose e(p) is reported as an identity. Since e(p)
and e(q) are ambiguous, A = e(q) — e(p) is ambiguous.
A sufficient condition for ambiguity is |A| < w with
w the width of the interval value of A in h-bit inter-
val arithmetic. We call |A]/w the perturbation ratio
of e. We approximate e(q) by its linear Taylor series
e(p) + rg - v with g the gradient of e with respect to
p. The approximate perturbation ratio is r|g - v|/w. Its
maximum for a predicate that depends on d input pa-
rameters is m = r||g||v/d/w because the components of
v are bounded by one.
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Lemma 1 The probability that rlg - v|/w < 1 is less

than 2v/2d/m.

Proof. If |g-v| < w/r, v lies in a slab of (—1,1)? of
thickness at most 2w/(r||g||). The maximum area of a

cross section is v/2 by Ball’s theorem. Hence, the volume
of the slab is at most 2v/2w/(r||g||) = 2v/2d/m. O

We estimate an upper bound on 2\/@/ m using the
maximum d and using the minimum perturbation ratio
of all ambiguous predicates that are nondegenerate as
an estimate for the lower bound of m. This false iden-
tity probability estimate neglects the truncation error
of the linear Taylor series. One can estimate this error
by comparing e(p + rv) to e(p + rv/2) and can control
it by shrinking 7.

5 Results

We tested SDD on eight computational geometry al-
gorithms on polyhedrons. Table 1 lists the input
to the tests, and subsequent tables list the results.
The inputs are displayed in the papers cited be-
low. We provide the software at https://github.com/
Robust-Geometric-Computation.

5.1 Rational predicates

The first five tests use rational predicates. 1) We pack
three polyhedrons into a box with an algorithm [2] that
composes ten Minkowski sums and Boolean operations.
2) We compute a constrained Delaunay triangulation of
a polyhedron with an algorithm [23] that places Steiner
points on edges. 3) We apply the same triangulation al-
gorithm to the Minkowski sum of two polyhedrons. 4)
We compute a constrained Delaunay mesh of a polyhe-
dron with an algorithm [24] that places Steiner points
on edges and facets, and at the circumcenters of tetra-
hedrons. 5) We repeat a test of our algorithm [1] for ap-
proximating the free space of a four degree of freedom
(4DOF) polyhedron that translates freely and rotates
around its z axis.

The best prior degeneracy detection algorithm is ex-
act rational evaluation with floating point filtering.
Adaptive precision evaluation [22] is inapplicable be-
cause most of the predicates have derived parameters.
For test 1, our prior work [21] eliminates all degeneracies
by perturbing the vertices of the polyhedron output of
each step. Topology changes are allowed. As indicated
in Sec. 1.2, this approach is efficient yet lacks an error
bound. For test 5, our prior work [1] uses a preliminary
version of rational SDD.

Table 2 shows the test results using k = 2 primes.
Columns p through c¢ refer to SDD. The percentage of
ambiguous predicates a ranges from 0% to 22% of which
the degenerate percentage d is a large majority. The

predicate evaluation time ¢ is between 30% and 60% of
the total CPU time c¢. At least 60% of ¢ is for floating
point interval arithmetic f, at most 25% is for modular
arithmetic m, and at most 38% is for arbitrary precision
interval arithmetic e. Using & = 5 primes increases m
by median and maximum factors of 1.7 and 2.9. The
next two columns compare SDD to exact evaluation of
ambiguous predicates using GMP. The predicate evalu-
ation time increases by a factor xt of up to 216 and the
CPU time increases by a factor xc of up to 131. The
last column lists the maximum bit complexity b of the
predicates in the test: the total number of bits in the
numerator after cancellation. This number is obtained
as a byproduct of exact rational evaluation. It ranges
from about a thousand to almost 2 million.

The degeneracy detection failure probability bound
(Sec. 2) with k = 2 is at most 4 x 1077 because b is
at most 1810577 (for test 4b), and n ~ 9.3 x 107 by
the prime number theorem. For & = 5, the bound is
10719, We never see a zero residue for an unambiguous
subexpression of an ambiguous predicate, and so the es-
timated failure rate is zero. We ran test 4b 250 times
with k=1000. Each run had 44 million unambiguous
subexpressions and 200,000 nonzero ambiguous predi-
cates. The latter is derived as p(a/100)(1—d/100) ~ 0.2
million. The number of zero residues for each type was
6404 and 29. This implies a zero residue rate of 1 in 1.7
billion for both populations. Thus the rate for the for-
mer appears to be a good proxy for the latter. Further-
more, both are close to 1/q for a random 32-bit prime
g, 1 in 3 billion, corresponding to a uniform distribu-
tion of residue values. In contrast, the provable bound
for k = 1 and b = 1810577 is 1 in 1700. So high bit
complexity has some effect, but not nearly as much as
the bound indicates. Using the measured zero residue
rate, the estimated degeneracy detection failure rate for
k= 21is 3 x 10719, similar to the provable bound for
k =5.

We can only derive the bound for £k = 5 by eval-
uating in exact rational arithmetic to determine the
bit-complexity b after cancellation. In contrast, the es-
timated rate requires negligible overhead to compute
since the SDD algorithm already calculates the residues
for the unambiguous subexpressions of ambiguous pred-
icates. To estimate the probability that the geometric
construction failed, the individual predicate probabil-
ity 3 - 107! should be multiplied times the number of
nonzero ambiguous predicate, such as the 200,000 for
testdb. The largest of these is 56 million for test 5b.

5.2 Algebraic predicates

The last three tests use both algebraic and rational
predicates. 6) We repeat a test from our prior work
on 4DOF motion planning [17]: sort 100000 angles at
which four randomly generated pairs of robot and ob-
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Table 1: Test inputs.

#  Algorithm Shape 1 Facets Shape 2 Facets Shape 3 Facets
la packing cube 12 glacier 32  sphere 760
1b  packing glacier 32 glacier 32 glacier 32
lc  packing glacier 32 sphere 760 sphere 760
le packing sphere 760 sphere 760 sphere 760
2a CDT bull 12400

2b CDT ear 32236

2c CDT horse 39694

3a  CDT of Minkowski sum bull 12400 glacier 32

3b  CDT of Minkowski sum ear 32236 glacier 32

3c  CDT of Minkowski sum horse 39694 glacier 32

4a  mesh bull 12400

4b  mesh ear 32236

4c  mesh horse 39694

5a  4DOF free space frustum 12 tworooms 122

5b  4DOF free space plus 44  lattice-room 204

6 4DOF rotations not applicable

7a  4DOF path frustum 12 tworooms 122

7b  4DOF path plus 44  lattice-room 204

8a  3DOF free space rl 4 ol 736

8b  3DOF free space rl 4 02 2640

8¢ 3DOF free space rl 4 o3 4628

8d 3DOF free space r2 14 o4 8068

Table 2: Rational predicates: # test, p predicates in millions, a percent of p that are ambiguous, d percent of a that
are degenerate, ¢t predicate evaluation time in seconds, f,m,e percent of ¢ for floating point, modular, and arbitrary
precision arithmetic, ¢ total CPU time in seconds, xt and xc¢ multipliers of ¢ and of ¢ for exact evaluation, and b
maximum bit complexity.

# P a d t f m e c Xt  Xc b

la 38 9 97 11 8 13 7 30 10 4 5307
1b 35 9 93 11 72 15 13 23 13 7 13925
le 49 9 7 19 60 19 21 49 4 2 3484
1d 902 &8 79 274 66 18 16 666 6 3 9362
2a 3 1 98 06 75 25 0 1.8 1 1 1064
2b 6 0 98 12 96 4 0 4.0 1 1 942
2¢c 8 0 99 14 97 3 0 5.2 1 1 921
3a 29 2 77 11 63 9 28 37 10 4 4362
3b 54 1 51 25 53 9 38 T4 5 2 4373
3¢ 109 1 69 33 70 7 23 113 6 3 4429
4a 45 3 92 12 8 6 11 35 4 2 600364
4 194 2 95 51 90 4 6 167 38 12 1810577
4c 90 1 8 23 90 3 7 90 1 1 65680
ba 1113 5 91 252 79 10 11 420 216 131 292091
5b 1026 22 75 704 60 23 17 1114 100 63 115587

stacle features can have simultaneous contacts. 7) We
generate a path in the test 5 approximate free space.
8) We mesh the free space of a 3DOF polyhedron that
translates and rotates in a plane, which we compute
with our prior algorithm [20].

In test 6, the robot and obstacle features are each
generated from a pool of 12 vertices with random co-

ordinates. Four robot/obstacle feature pairs define a
rational angle polynomial. Angle parameters s and t
are zeros of angle polynomials f and g and yield unit
vectors

1—8%2 25 d 1—t2 2
u = —_—, T an v =
14+s27 1442

1+#’1+ﬂ>'
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Table 3: Algebraic predicates: # test, p predicates in
millions, a percent of p that are ambiguous, [ and i per-
cent of a that are algebraic and identities, ¢ predicate
evaluation time in seconds, f,m, e percent of ¢ for float-
ing point, modular, and arbitrary precision arithmetic,
¢ total CPU time in seconds, and 10™" error probability.

# D a l i t f m e ¢ T
6a 35 02 96 9 51 5 2 93 57 *
6b 35 02 9 9 46 5 1 94 53 *
7a 02 13 45 1 1 8 13 79 1 28
T 01 5 21 0 O 9 12 79 0 36
8a 1 5 48 37 1 33 14 33 2 20
8b 4 7T 49 20 2 34 16 50 6 30
8& 11 6 44 22 6 35 14 51 15 16
8 105 5 26 10 40 42 10 48 93 18

Vectors with sign(u,) = sign(v,) (equivalent to
sign(s) = sign(t)) are ordered by sign(u x v) (in 2D
U X V= UgUy — UyV;). Test 6a tests for identity by de-
termining if f(¢) = 0. It is also required to check that
s’ —t # 0 for every zero s’ # s of g. Test 6b checks
if uw x v = 0 directly. In test 7, the path consists of
rotations plus shortest paths on the polyhedron bound-
ary of the approximate free space for a fixed angle. In
test 8, we approximate the boundary patches with tri-
angles that conform at patch boundaries, compute the
arrangement of the triangles, and return the union of
the cells with positive winding numbers.

There is no practical prior general degeneracy detec-
tion algorithm. The only option is separation bounds
and these are impossibly small in every test. For test 6,
our prior degeneracy detection algorithm is a table
lookup of the factorizations of f and g, which is much
faster than SDD but requires much specialized work
to categorize all the angle polynomials for the domain.
For test 7, our prior work prevents degeneracy by re-
peated geometric rounding [16], which is extremely slow
(Sec. 1.2).

Table 3 shows the test results. We set h = 265 in the
perturbation algorithm. We obtained this value by set-
ting h = 106 (two times double precision) and increasing
it by increments of 53 until the error estimate became
tiny for tests 7 and 8. The error cannot be estimated
in test 6 because every ambiguous predicate is an iden-
tity. The predicate values are the same for h = 212 and
h = 265, which shows that the error estimate is conser-
vative. Empirically, ambiguous at h bits is equivalent
to identity, so algebraic predicates never require more
than h bits and there are no restarts. As noted for the
rational case, the error rate should be multiplied by the
number of nonzero ambiguous expressions to obtain the
probability that the computation failed. The error rate
is very conservative, since this rate is zero.

Table 4 compares the perturbation-based (Sec. 4) and

Table 4: Predicate evaluation: # test, n algebraic ar-
guments, p predicates, ¢ perturbation algorithm time in
microseconds, Xp and Xxe multipliers for residue algo-
rithm with SDD and exact evaluation.

n P t Xp xe
6a 1 84000 560 0.2 2.4
6b 2 84000 509 3.5 84
8 3 32500 25 400 1040
8 4 22000 64 1150 2600

quotient-ring-based (Sec. 3) algorithms on predicates
from tests 6 and 8. Test 7 is unsuitable for the residue
method because the predicates required to construct a
shortest path traversing m faces of a polyhedron are de-
gree m in m square roots of rational expressions. The
test 6 predicates are a) f(t) or b) (1—s2)(2t)—(2s)(1—t2)
where s and t are zeros of f and g, respectively. The
test 8 predicates are low-degree polynomials in three or
four coordinates of points. The coordinates of a point
are rational expressions in a zero of a polynomial of de-
gree 2 or 4. The residue algorithm always returns the
same result as the perturbation algorithm, which pro-
vides further evidence that the latter is correct. We
compare the running times on predicates where float-
ing point filtering fails, hence degeneracy detection is
required. The residue algorithm with rational SDD
(k = 2) is faster than the perturbation algorithm on
predicates with n = 1 algebraic numbers but is 4 times
slower with n = 2, 400 times slower with n = 3, and
1150 times slower with n = 4. The residue algorithm
using exact rational evaluation for ambiguous predicates
is 2 to 24 times slower than using SDD.

6 Discussion

The tests confirm the claims in the introduction. 1)
Identities are common in algorithms that construct ob-
jects. Tests 1, 5, 7, and 8 have many constructions
and 5%-10% of the predicates are identities, whereas
the other tests have few constructions and under 2%
identities. 2) Identities are a computational bottleneck
for prior degeneracy detection algorithms. For rational
predicates, exact evaluation is median 8 and maximum
216 times slower than SDD on tests 1, 3, 4, and 5, which
have high expression depth. For algebraic predicates,
separation bounds are useless for all the tests. 3) SDD
is reliable and fast. For parameter settings with a mi-
nuscule estimated error rate (k = 2 and h = 256), the
predicate evaluation time is at most 60% of the CPU
time. Hence, no alternate algorithm could reduce the
overall running time by more than a factor of two. 4)
The running time grows slowly with the parameters k
and h, so there is no need for fine-tuning. For exam-
ple, h = 265 is larger than necessary for most of the
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tests, but the additional cost is insignificant. 5) For
algebraic predicates, the perturbation-based algorithm
far outperforms the quotient-ring-based algorithm.
The error estimate for the perturbation-based SDD
algorithm depends on the assumption that the predicate
is analytic on [0,7]. In practice, a value of h that yields
a small estimate also ensures that ambiguity at h is
equivalent to identity. This implies not only that a) a
nondegenerate yet ambiguous e(p) is unlikely but also
that b) an identity e(p) rarely becomes a non-identity
e(q). Since identity is more restrictive than non-identity,
¢) going from non-identity to identity is even less likely.
The probability of an undetected analytic failure is the
product of (a) and (b). Although we do not have an
analysis of these probabilities as for an analytic false
identity, we feel it is safe to disregard their product in
comparison to the analytic false identity probability.
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