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Drawing complete outer-1-planar graphs in linear area

Therese Biedl∗

Abstract

A complete outer-1-planar graph is a graph that can be
drawn such that every edge has at most one crossing, all
vertices are on the infinite face, and the so-called dual
tree is a complete ternary tree. We show that every
complete outer-1-planar graph has a straight-line grid-
drawing that has area O(n).

1 Introduction

In this paper we consider the question of how to cre-
ate a straight-line grid-drawing of a graph, i.e., we want
to map the vertices to grid points, and draw edges as
straight-line segments between their endpoints such that
vertex-points are distinct and no edge-segment contains
a vertex-point except at its endpoints. If the input
graph is planar (it has a planar drawing without cross-
ing), then we further require that the drawing is likewise
planar. Generally, whenever the given graph comes with
a drawing (not necessarily using straight lines), then we
expect the created straight-line grid-drawing to reflect
the given drawing of the graph.

The objective is usually to achieve small area of the
drawing (i.e., the area of the minimum enclosing axis-
aligned bounding box of the drawing). Let n be the
number of vertices. Any graph can be drawn with area
O(n3) by placing the vertices on the moment-curve. For
planar graphs, it has long been known that O(n2) is
always sufficient [15, 16], and for some planar graphs
Ω(n2) area is required in a planar drawing [14]. For
some subclasses of planar graphs, sub-quadratic area
can be achieved. Of particular relevance to this pa-
per are the results for outer-planar graphs, i.e., graphs
that have a planar drawing where all vertices are inci-
dent with the unbounded region (the outer-face). Such
graphs have straight-line grid-drawings in sub-quadratic
area [9], and very recently the area has been reduced to
O(n1+ε) [13].

We are interested here in drawing 1-planar graphs,
i.e., graphs that have a drawing that is not necessarily
planar but every edge is crossed at most once. Such
graphs do not always have a straight-line grid-drawing
[10] but if they are 3-connected then there is a straight-
line drawing after deleting at most one edge [2] and the
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area is quadratic. Clearly some 1-planar graphs require
Ω(n2) area since all planar graphs are also 1-planar.

The natural question is now whether there are sub-
classes of 1-planar graphs that have straight-line grid-
drawings in sub-quadratic area? The most obvious
class to consider are outer-1-planar graphs, which are
1-planar graphs with a 1-planar drawing where all ver-
tices are on the outer-face. It is known that outer-1-
planar graphs can be drawn in sub-quadratic area in
the drawing style of “visibility representations” (not
reviewed here) [4]. Straight-line drawings of outer-1-
planar graphs appear to have studied only a little bit.
Dekhordi and Eades showed that they have so-called
RAC-drawings [8] but they did not analyze the area.
Auer et al. [3] showed that they have a straight-line
grid-drawings in quadratic area. Bulatovic [5] achieved
sub-quadratic area in some special situations.

In the pursuit of sub-quadratic-area drawings for
outer-planar graphs [9, 13], one helpful ingredient was
to first study a complete outer-planar graph, i.e., an
outer-planar graph for which the dual graph (minus the
outer-face vertex) is a complete binary tree when root-
ing it suitably. By exploiting its recursive structure, Di
Battista and Frati showed that a complete outer-planar
graph has a straight-line grid-drawing in O(n) area [9].

In the same spirit, we ask here whether we can cre-
ate small straight-line grid-drawings of complete outer-
1-planar graphs (defined formally below). Bulatovic
[5] showed that these have a grid-drawing of area
O(n2·log3 2) = O(n1.26). In this paper, we improve on
this result and show that all complete outer-1-planar
graphs have a straight-line grid-drawing of area O(n).
This fits into a long line of research of achieved opti-
mal O(n) area for straight-line grid-drawings of special
graphs, see e.g. [1, 6, 7, 9].

2 Preliminaries

We assume familiarity with graph theory and planar
graphs, see for example [11]. Assume throughout that
G is an outer-1-planar graph with n vertices that is
maximal in the sense that no edges can be added while
maintaining simplicity and outer-1-planarity. Then G
consists of an n-cycle as the outer-face and chords of
the n-cycle. The skeleton Gs of G is the subgraph of G
formed by the uncrossed edges, i.e., edges without cross-
ing. The inner faces of Gs are the maximal bounded
regions that contain no edges of Gs; it is known that
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Figure 1: The complete outer-1-planar graph of depth
4. The dual tree is orange (striped/dotted).

all inner faces of Gs are triangles or quadrangles if G is
maximal outer-1-planar [8]. The dual tree of G is ob-
tained by creating a vertex for every inner face of Gs

and making them adjacent if the corresponding faces
share an edge. The dual tree of an outer-1-planar graph
is (as the name suggests) a tree and all vertices have
degree at most 4.

We call G a complete outer-1-planar graph if the dual
tree T is a complete ternary tree after rooting it suit-
ably. See Figure 1. The depth D of G is the number of
vertices on the path in T from the root to the leaves.
If D ≥ 2, then G consists of K4 (drawn with one cross-
ing and corresponding to the root of the dual tree) with
three copies of a complete outer-1-planar graph of depth
D−1 attached at three of the four uncrossed edges of
K4. The poles of G are the endpoints of the uncrossed
edge (x, y) of K4 that is on the outer-face of G.

For an uncrossed edge (a, b) not on the outer-face, the
hanging subgraph Hab at (a, b) is the maximal subgraph
that has (a, b) on the outer-face and does not contain
both poles of G. The poles of Hab are a and b.

The complete outer-1-planar graph of G depth D has
Θ(3D) vertices, hence D ∈ Θ(log n). It is very easy to
draw G in a grid of width O(n) and height O(D) [5],
so with area O(n log n). But achieving linear area with
this approach seems hopeless since even the skeleton of
G requires Ω(log n) width and height in any drawing.
(This follows from [12] since its so-called pathwidth is
logarithmic.) Instead for a linear-area drawing we con-
struct a drawing of width and height O(

√
n).

Triangular grids. One ingredient for drawing com-
plete outer-1-planar graph in linear area will be to use
the grid points of a triangular grid (with grid-lines of
slope

√
3, 0,−

√
3), rather than the standard (orthogo-

nal) grid. This makes no difference overall, since the
triangular grid can be mapped to an orthogonal grid
with a shear, but allows us to treat hanging subgraphs

symmetrically.
The following shortcuts will be useful. We use arrows

such as ↗ and ↖ for grid-lines of slope
√

3 and −
√

3,
and so for example speak of a ↗-ray or the distance
in ↖-direction. An axis-aligned equilateral triangle is a
triangle with three equal sides that all lie along grid-
lines. An axis-aligned isosceles triangle is a triangle
where two equal-length sides lie along grid-lines while
the third side connects two grid points and has angle
30◦ on both ends. We will usually drop “axis-aligned”
as we study no other equilateral or isosceles triangles.
A triangle is called upward if it has a unique top cor-
ner, i.e., point with maximum y-coordinate. We use
terms such as top/bottom/left/right side/corner only
when this uniquely identifies the feature.

3 Drawing types

Let G be the complete outer-1-planar graph of depth
D, and let x, y be its poles. We will need three kinds of
drawings of G that will be combined recursively:

A type-A drawing A of G is contained within an equi-
lateral upward triangle T . Vertices x and y are placed on
the left and right side of T , respectively, with distance
exactly D from the top corner. Drawing A occupies no
points on the right side of T except for y. See Figure 2.

Furthermore, A must have the flexibility to move x
as follows. Let the wedge of A be the smaller wedge
between the ↗-ray and the ↖-ray emanating from x.
We require that for any position x′ within the wedge,
moving x to x′ gives a drawing of G for which all edges
are either within T or within the triangle spanned by
x′, y and the left corner of T .

A type-B drawing B of G is contained within an equi-
lateral upward triangle T . Vertices x and y are placed
at the top and right corner of T , respectively, and the
left corner is empty. See Figure 2.

Furthermore, B must have the flexibility to move y as
follows. Let z be the point on the bottom side of T that
has distance exactly D to y (we call this the attachment
point of B). Let the wedge of B be the smaller wedge
between the ↘-ray and the →-ray emanating from y.
We require that for any position y′ within the wedge,
moving y to y′ gives a drawing of G. Furthermore, the
drawing is contained within T and the triangle spanned
by x, y′, z.

We call a type-B drawing a type-B+-drawing if addi-
tionally no point other than x is on the left side of trian-
gle T . With the exception of D = 1 all type-B drawings
that we construct are actually type-B+-drawings.

A type-C drawing C ofG is contained within an isosce-
les upward triangle T where the left and bottom side
have the same length. Vertices x and y are placed at
the top and right corner of T , respectively. Drawing
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Figure 2: Drawings of type A, B and C. The wedge is green (striped).

C occupies no points on bottom side of T except for y
and (possibly) points within unit distance from y. See
Figure 2.

Furthermore, C must have the flexibility to move x
as follows. Let the wedge of C be the smaller wedge
between the ↖-ray and a ray with slope −

√
3/2 (i.e.,

extending xy) emanating from x. For any position x′

within the wedge, moving x to x′ gives a drawing of G.

Define the following function w(·) on positive integers:

w(D) :=

 2 if D = 1
6 if D = 2
3w(D−2) + 4(D−2) + 6 if D ≥ 3

A simple proof by induction shows that

w(D) ≤ 16 · 3D/2−1 − 2D − 5 ∈ O(3D/2).

We will show the following by induction on D:

Lemma 1 The complete outer-1-plane graph of depth
D has drawings of type A, B and C where the shortest
side of the bounding triangle T has length exactly w(D).
It also has a type-B+ drawing where the side-length of
T is at most w(D) + 1.

In the base case (whereD = 1 or 2) these drawings are
easily created, see Figure 3 for some cases and Figure 10
in the appendix for all remaining ones.

x y
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w2

x

yz

x

y

Figure 3: The drawings for D = 1 for type A,B,C.

4 The inductive step

Assume that the dual tree T of G has depth D + 2
where D ≥ 1. We can hence split the graph into

the subgraph Q corresponding to the root of T and
and its three children, and the hanging subgraphs that
are attached at the uncrossed edges that bound Q.
(Each hanging subgraph is a complete outer-1-plane
graph of depth D.) Enumerate the outer-face of Q as
〈x, a, b, c, d, e, f, g, h, y〉 in ccw order where x, y are the
poles of G. See Figure 4.
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Figure 4: Splitting the graph into Q and nine hanging
subgraphs.

The idea. Building a drawing of G uses the obvious
recursive approach: create drawings of the nine hanging
subgraphs of Q, combine them, and add the edges of Q.
However, there are some intricate details with regards
to placement of poles and spacing of subgraphs. We
therefore first give a rough idea.

Observe that both an equilateral and an isosceles tri-
angle T can be split into 9 equal-area triangles that are
either equilateral or isosceles, see Figure 5. We assign
the hanging subgraphs to these triangles as indicated in
the figure, and plan to draw Q within the thick black
lines (after expanding a bit).

Note that in our plan to place the vertices, some poles
(e.g. vertex c for subgraph Hbc) are far away from the
corresponding triangle; here the flexibility to move one
pole within the wedge of the drawing will be crucial.
However, this comes with the price that we must keep
line segment cz free of other drawings, where z is the
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Figure 5: The idea of combining subgraphs. Locations
for the vertices of Q are approximate.

attachment point of the drawing of Hbc. Therefore sub-
graphs cannot be placed exactly edge-to-edge as Fig-
ure 5 suggests and we must be more careful in spacing
them.

Placing four subgraphs. We first explain how to place
drawings of Hxa, Hab, Hbc, Hcd; this will be the same for
all three constructions below. Consult Figure 6. For
any hanging subgraph Huv, let Γuv be a (recursively
obtained) drawing of Huv—the text below will specify
its type. Sometimes we will rotate Γuv; we use Tuv
(drawn in cyan/light gray) for the bounding triangle of
Γuv after such a rotation has been applied.

• Let Γxa be a type-A drawing for Hxa. The white
circle in Figure 6 shows where pole x would be
within Γxa, but it will actually be placed later
somewhere within the wedge of Γxa.

• Let Γab be a type-A drawing for Hab, rotated by
+60◦. Place the left corner of Tab one unit in ↘-
direction from the top corner of Txa. This puts pole
a within the wedge of Γab as required.

• Let Γbc be a type-B drawing for Hbc, rotated by
+120◦ and placed such that the two locations of b
coincide. Pole c will be placed somewhere within
the wedge of Γbc.

• Let Γcd be a type-C drawing for Hcd, rotated by
−60◦ and placed such that the left corner of Tcd
coincides with the attachment point z of Tbc. Pole
c will be placed somewhere within the wedge of Γcd.

• Consider the point where the ↗-ray from b inter-
sects the ↑-ray from d, and let rc be the ↗-ray
emanating from here. We will later place c some-
where on ray rc, which keeps it within both wedges
of Γbc and Γcd, and keeps line segment cz outside
all other drawings.

Observe that all drawings are disjoint except where
they share a vertex. This holds because in a type-A
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Figure 6: Placing Hxa, . . . ,Hcd.

drawing the right side only contains the pole, and in
Γcd the shorter side at d contains points only within
distance 1 from d, but these points are not used by Γbc.
Also observe that for any placement of x within the
wedge of Γxa, line segment ax will be outside all other
drawings. Finally observe that the path a-b-c (shown
thick dashed) is drawn with slopes alternating between
[0,
√

3) and
√

3; this will be crucial below.

Completing a type-A drawing. To complete the draw-
ing to a type-A drawing, we copy and flip the existing
drawing along a vertical line. See also Figure 7(a). More
precisely, let `v be a vertical line that has →-distance
D/2 from d. Mirror Γxa, . . . ,Γcd along this line to get
Γef , . . . ,Γhy. The only subgraph missing is Hde, for
which we use a type-A drawing that fits exactly with
the existing points for d and e. One verifies that all
drawings are disjoint except at common poles.

We define the bounding triangle T of the drawing
to be the upward equilateral triangle that touches the
left side of Txa, has ↗-distance one to the bottom side
of Tde, and has ↗-distance three from the right side of
Thy. (This is slightly asymmetric; the line `v does not go
through the top corner of T .) Elementary computation
shows that T has side-length 3w(D)+4D+6 = w(D+2)
as desired. Place x and y (as required for a type-A
drawing) at distance D+2 from the top corner of T ;
this puts x within the wedge of Γxa.
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Figure 7: Creating (a) a type-A drawing and (b) a type-C drawing.

We place c at the start-point of ray rc, which has ↖-
distance D+1 from the left side of T . Let rf be the
copy of ray rc on the right side; we place vertex f on
this ray with ↖-distance D+2 from the left side of T .
With this, fy has slope

√
3 while cf has slightly smaller

slope.

We must argue that we have the flexibility to move x
within the wedge W of the drawing. Consider the path
π = 〈w1, w2, . . . , w2D+1〉 of neighbours of x. [The last
five vertices on π are a, b, c, f, y, and this part is shown
purple/dotted in Figures 3, 7, 10.] Path π connects the
left side of T with the right side, and hence separates
vertex x from all other vertices of the drawing. Also (as
argued directly above or known by induction for the part
of π in Γxa) the slopes along π alternate between a value
in [0,

√
3) and exactly

√
3. For 1 ≤ i ≤ D, letWi be the

smaller wedge between the two rays emanating from w2i

through w2i−1 and w2i+1. By the slopes of the edges,W
is strictly inside Wi. Therefore {w2i−1, w2i, w2i+1, x

′}
forms a strictly convex quadrangle for any location of
x′ ∈ W, and the K4 formed by these four vertices is
drawn with a crossing as required. Also, the quadran-
gles for different values of i are disjoint. So moving x′

within W gives a drawing of G.

Creating a type-B drawing. To create a type-B draw-
ing, we place all hanging subgraphs except Hhy exactly
as in construction for the type-A drawing. Vertex h is
placed as dictated by Γgh. For Hhy we use a type-B+

drawing Γhy that we place such that the two drawings
of h coincide. See Figure 8. One verifies that all draw-
ings are disjoint except where they have common poles
(this holds for Γhy since we use a type-B+ drawing).

We define the bounding triangle T of the drawing to
be the upward equilateral triangle that has ↖-distance
one from the left side of Txa, ↗-distance two from the
line through gh and has side-length 3w(D) + 4D + 6 =
w(D+2). Elementary computation shows that this tri-
angle then includes Γhy since Thy has side-length at
most w(D) + 1. The left side of T is empty, so the cre-
ated type-B drawing is automatically a type-B+ draw-
ing. We place x and y as required at the top and the
right corner of T .
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Figure 8: Creating a type-B drawing.

Let R be the right side of T . Place vertex c on rc
and vertex f on the ↑-ray from e, both with↗-distance
one to R. In particular xy is on R, cf has slope −

√
3

and ↗-distance one to R, and gh has slope −
√

3 and
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↗-distance two to R; with this the complete graphs
{x, y, c, f} and {f, y, g, h} of Q are drawn correctly (al-
beit with very small angles). All other edges of Q are
also drawn correctly, see Figure 8. Also f is above e
and to the right of the ↖-ray from g, hence within the
wedges of Γef and Γfg as required.

Also note that the attachment point of Γhy is the
lowest point of the drawing, and its ↘-projection onto
the bottom side of T has distance D+2 from y. Finally
path x-c-f -g-h is drawn alternating between slopes in
[−∞,−

√
3) and −

√
3. Therefore as for type-A draw-

ings one argues that y has the flexibility to move within
its wedge, as long as nothing is placed between the at-
tachment point z of T and the new location of y.

Creating a type-C drawing. Start with Γxa, . . . ,Γcd,
placed as described above, but rotate everything by 60◦.
Let ` be the ↗-line that has ↘-distance w(D) from
d. Copy and mirror Γxa, . . . ,Γcd along line ` to get
Γef , . . . ,Γhy. The only subgraph missing is then Hde,
for which we use a type-C drawing that fits exactly with
the existing points for d and e. See Figure 7(b). One
verifies that all drawings are disjoint except where they
have common poles.

We define the bounding triangle T to be the upward
isosceles triangle where the left side is parallel to the
left side of Txa and at ↗-distance 1, the bottom side is
parallel to the bottom side of Thy and at ↗-distance 1,
and the right side is parallel to the top side of Tde and
at →-distance 2. (Line ` is the axis of symmetry for
T .) Place x and y (as required for a type-C drawing)
at the top and right corner of T . We place c and f
on the rays rc and rf , with distance one from the start-
point of the ray. This places the line through cf halfway
between the line through de and the line through xy.
With this the complete graphs {x, y, c, f} and {c, d, e, f}
of Q are drawn correctly (albeit with very small angles).
All other edges of Q can clearly be added.

As for the flexibility of moving x, the same argument
as for the type-A drawing applies with respect to the
complete graph formed by {x, a, b, c}. For the complete
graph formed by {x, c, f, y}, observe that xy and cf are
parallel and therefore moving x to some point x′ in the
wedge (hence strictly above the line through cf keeps
{x′, c, f, y} as a strictly convex quadrilateral.

To analyze the length of the shorter sides of T , let
c0 be the top corner of Tcd. Observe first (see also Fig-
ure 7(b)) that c0 has ←-distance 2D+2 to the left side
of T and↘-distance 3w(D)+2D+2 to the bottom side
of T . Now consider the close-up in Figure 9, let c1 be
the ←-projection of c0 onto the left side of T , and let
c2 be the place where the line through de intersects the
left side of T . Since de has slope −

√
3/2 while c0c1 has

slope 0 and c1c2 has slope −
√

3, the triangle {c0, c1, c2}
is isosceles, and therefore d(c1, c2) = 2D+2. The ↖-

distance from c2 to x is 2 by definition of T . Therefore
the left side of T has length 3w(D)+4D+6 = w(D+2).
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Figure 9: Close-up of the type-C construction.

This ends the proof of Lemma 1. Since a complete
outer-1-planar graph has n = 3D + 1 vertices, we have
w(D) ∈ Θ(3D/2) = Θ(

√
n) and the drawings reside (af-

ter a skew) in an orthogonal grid of area O(n).

Theorem 2 Every complete outer-1-plane graph has a
straight-line drawing in a grid of O(n) area.

Following the steps of our construction, it is easy to
construct the drawing in linear time.

5 Remarks

Our result is easily stated, but its proof is annoyingly
complicated. The corresponding result for complete
outer-planar graphs by Di Battista and Frati [9] has
a very elegant proof: Draw a complete binary tree with
a special property called “star-shaped”, and one can de-
rive a drawing of the balanced outer-planar graph from
it. This does not translate to outer-1-planar graphs
for multiple reasons. First, any complete outer-planar
graph contains a complete binary tree (of roughly the
same depth) as a subtree, so after drawing the complete
binary tree one “only” has to add some edges. Attempts
to generalize this for drawing a complete outer-1-planar
graph G led to super-linear area [5]. The dual tree T
of G is a complete ternary tree, but it does not map
naturally to a subtree of G, and it would not be clear
how to expand a drawing of T to one of G. Is there a
simpler way to prove Theorem 2?

Also, in the paper by Di Battista and Frati [9] drawing
the complete outer-planar graph was really just a warm-
up to get results for all outer-planar graphs via star-
shaped drawings of trees, useful also for [13]. We stud-
ied drawings of complete outer-1-planar graphs in the
hopes that it would lead to sub-quadratic area-bounds
for drawing all outer-1-planar graphs. But this seems
significantly harder and obtaining area-bounds that are
sub-quadratic (and ideally O(n1+ε)) remains open.
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Appendix

In Figure 10 we show the drawings for the base case in the
other situations.
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Figure 10: The type-B+ drawing for D = 1 and the
drawings (of type A, B = B+ and C) for D = 2.


