CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Computing Realistic Terrains from Imprecise Elevations*

Anna Lubiw!

Abstract

In the imprecise 2.5D terrain model, each vertex of a
triangulated terrain has precise x- and y-coordinates,
but the elevation (z-coordinate) is an imprecise value
only known to lie within some interval. The goal is to
choose elevation values from the intervals so that the re-
sulting precise terrain is “realistic” as captured by some
objective function.

We consider four objectives: #1 minimizing local ex-
trema; #2 optimizing coplanar features; #3 minimizing
surface area; #4 minimizing maximum steepness.

We also consider the problems down a dimension in
1.5D, where a terrain is a poly-line with precise z-
coordinates and imprecise y-coordinate elevations. In
1.5D we reduce problems #1, #3, and #4 to a short-
est path problem, and show that problem #2 can be
2-approximated via a minimum link path.

In 2.5D, problem #1 was proved NP-hard by Gray et
al. [Computational Geometry, 2012]. We give a poly-
nomial time algorithm for a triangulation of a polygon.
We prove that problem #2 is strongly NP-complete, but
give a constant-factor approximation when the triangles
form a path and lie in a strip. We show that problems
#3 and #4 can be solved efficiently via Second Order
Cone Programming.

1 Introduction

A natural problem that arises in Geographic Informa-
tion Systems is to compute a triangulated terrain in 3D
space that is “nice” or “realistic”. There is no single
objective function to capture “niceness”. In the study
of erosion and hydrology, it is generally accepted that
pits in a triangulated terrain are artifacts of imprecision,
due to the unrealistic occurrence of water accumulation
in flow simulations [9]. This motivates minimizing the
number of extrema in the terrain. Since actual terrains
tend to be smoothed by erosion, other natural objec-
tives are to minimize the surface area, or to make the
terrain as flat as possible.

A triangulated terrain is often computed from real
elevation data. It is usually assumed that the data is
accurate, however data acquisition can be complex and
potentially prone to errors. It may be appropriate to

*Results from Master’s thesis of the second author [16].
fSchool of Computer Science, University of Waterloo,
alubiw@uwaterloo.ca, graeme.stroud@uwaterloo.ca

Graeme Stroudf

model the input data as coming from a possible range
of values to account for this uncertainty. Dealing with
uncertainty or imprecision in the input data is a broad,
well-studied area in computational geometry. Each in-
put point may be represented by an uncertainty region,
and the issue then is to find the best (or worst) place-
ment of points, one in each region, for the problem at
hand. For imprecise points in the plane, there is work
on minimizing/maximizing the width, the area of the
bounding box, or the diameter of the points [T}, [13].

For the case of terrains, Gray and Evans [§], and
Gray [7] formulated the imprecise 2.5D terrain
model. In this model, the x, y-coordinates of points are
given as input, in addition to a triangulation defined on
the points when projected to the xy plane, but the z-
coordinate (elevation) of each point is only known “im-
precisely” within some interval of possible values. We
obtain a precise 2.5D terrain by choosing a precise
elevation from each uncertainty interval and connecting
the points together according to the input triangulation.
Various “niceness” criteria for choosing a precise terrain
have been considered in the past such as minimizing the
number of local extrema [J], or minimizing the length
of the shortest path along the terrain from one point to
another [8, 12].

When these problems are NP-hard or have unknown
computational complexity for 2.5D terrains, researchers
(e.g., Gray et al. [I0]) have considered imprecise 1.5D
terrains. Here, the x-coordinates are precise, and the
elevations are the y-coordinates, each of which is given
imprecisely via an interval.

We explore four objective functions that capture dif-
ferent “niceness” criteria for a terrain. To the best of
our knowledge, only the first one (minimizing the num-
ber of extrema) has been considered before.

Objective #1: Minimizing local extrema. A local
extremum is a local maximum or minimum compared
to its neighbours in the triangulation. In a terrain these
correspond to peaks or pits. To deal with equal eleva-
tions, define a plateau to be a maximal set of points
of equal elevation that are connected by edges. A lo-
cal minimum [mazimum] is a plateau such that all
neighbouring points have higher [lower] elevations. The
problem of minimizing the number of local extrema was
proved NP-hard in 2.5D by Gray et al. [9]. We give a
polynomial time algorithm for the special case of a tri-
angulation of a polygon, and solve the 1.5D version in

34" Canadian Conference on Computational Geometry, 2022

#1: extrema

#2: coplanar

#3: area/length #4: steepness

1.5D O(n) [82]

2-approx [

o() [o(n) [§2

2.5D special | O(n?) [_qrél]
(polygon triangulation)

5-approx [§4 1
(strip triangulation)

2.5D general | NP-hard [9]

NP-hard [

SOCP [§] SOCP [§6]

Table 1: Summary of results, with new results in bold.

linear time via a shortest path.

Objective #2: Optimizing coplanar features. To
make a smooth terrain, we would like triangles to be
coplanar with adjacent triangles if possible. This can be
formalized as minimizing the number of patches, where
a patch is a maximal set of coplanar triangles that are
connected edge-to-edge. An alternative is to minimize
the number of bends, where a bend is an edge whose two
incident triangles are not coplanar. These objectives
have different solutions in general, though they have
the same solutions in 1.5D, where a patch is a maximal
set of connected collinear edges (a “link”) and a bend
is a point whose two incident edges are not collinear.
We show that both the patch and the bend versions are
NP-complete in 2.5D. We give an easy 2-approximation
in 1.5D and extend this to a 5-approximation for 2.5D
in the special case where the triangles form a path in a
strip (i.e., there are only two y-values).

Objective #3: Minimizing surface area/length.
These are very natural objective functions. In 1.5D
this becomes a shortest path problem. We formulate
the 2.5D version as a Second Order Cone Program
(SOCP). Second Order Cone Programming is a type of
convex optimization problem that can be solved quite
efficiently [I5] (though not in polynomial time).

Objective #4: Minimizing maximum steepness.
The steepness of a segment in 2D is the absolute value
of its slope, and steepness of a triangle in 3D is the
norm of its gradient. We consider minimizing the max-
imum steepness. Minimizing steepness gives a terrain
that is as flat as possible, another reasonable objective.

We formulate the 2.5D version as a Second Order
Cone Program, and show that the 1.5D version is solved
via a shortest path—even for a lexicographic version
where we minimize the maximum steepness, and sub-
ject to that, minimize the second maximum, etc.

Background. Gray [7] was the first to consider the
imprecise terrain model. (See also Gray and Evans [§].)
The problem they considered was finding the shortest
path from one point to another over all precise real-
izations of the terrain. Various other objective func-
tions have been explored for imprecise 1.5D and 2.5D
terrains. The problem of minimizing the number of ex-
trema was first explored by Gray et al. [9], and they
show there is no O(loglogn) approximation algorithm
unless P = NP. Driemel et al. [6] considered the prob-

lem of determining whether water can flow between two
points of an imprecise 2.5D terrain. Here, the assump-
tion is that water flows down the path of steepest de-
scent. Gray et al. [I0] considered a few objectives that
result in “smooth” 1.5D terrains, such as minimizing
[maximizing] the total turning angle, and minimizing
[maximizing] the largest [smallest] turning angle.

2 1.5D Terrains

In this section we show that optimal 1.5D terrains for
Objectives #1, #3, and #4 can be computed in linear
time by finding a shortest path in an appropriate poly-
gon, and that a minimum link path in the polygon pro-
vides a linear time 2-approximation for Objective #2.
Suppose the input to the problem has n points where,
for ¢ = 1,...,n, point ¢ must lie in segment ¢; at x-
coordinate x;, with 1 < x5 < ---x,. Let P be the sim-
ple polygon whose vertices are the top and bottom end-
points of the segments, with a chain joining consecutive
top endpoints, a chain joining consecutive bottom end-
points, plus the two edges ¢; and ¢,,. See Figure[ll We
use a shortest path from ¢; to £,,, which is unique unless
it is a straight horizontal path that can shift up/down.

Figure 1: The input segments for the imprecise 1.5D
terrain problem (solid) and the polygon P (dashed).

Theorem 1 A shortest path from €1 to £, in polygon
P can be found in linear time and provides an optimal
1.5D terrain for Objectives #1, #3, and #4.

Proof. The shortest path from one segment to another
in a simple polygon can be found in linear time [3].
This algorithm needs a triangulation of the polygon.
Thankfully, we do not need Chazelle’s impractical linear
time algorithm [2], since P is composed of trapezoids
each of which can be cut into two triangles.

Note that a shortest path in a polygon only bends
at the polygon vertices. The vertices of polygon P are

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

12 3 456 7 8 9 10 11 12

Figure 2: A shortest path terrain with five extreme
plateaus (marked by squares).

endpoints of segments, and therefore a shortest path
from ¢; to ¢, provides a 1.5D terrain. (As discussed
below, the fact that a minimum link path may bend
at non-vertex points is why we can only achieve a 2-
approximation for Objective #2.)

The theorem is obvious for Objective #3 (minimizing
length). We next consider Objectives #1 and #4.

Objective #1. Suppose the shortest path has k ex-
trema. We must prove that this is optimal, i.e., that
any 1.5D terrain has at least k extrema. The plateaus
of the leftmost point and rightmost point are extreme
by definition. If £ = 1 then there is a single plateau (the
shortest path is horizontal) and this is clearly optimal.
So suppose k > 1. Note that the extrema alternate be-
tween minima and maxima as we traverse the path. Let
pi; be the rightmost point of the jth extreme plateau,
lying on segment /;; for j = 1,...,k — 1, and—since
we want points where the path bends—Ilet p;, be the
leftmost point of the rightmost extreme plateau.

We will show that any 1.5D terrain must include at
least k extrema, the leftmost and rightmost extrema
plus at least k — 2 others, one between segments /;,_,
and /;, , for each j, 2 <j<n-—1.

First, note that the points p;; zig-zag, i.e., if p;; is
a minimum [maximum] then p;; is lower [higher] than
pi;_, and p;, . We see this in Figure 2} for instance,
where the point on segment 4 is below the points on
segments 3 and 9. Also, if p;; is part of a minimum
[maximum]| plateau, then the angle above [below] the
path at p;; is strictly convex, so (because the path is
shortest) p;, must be at the upper [lower] endpoint of
its segment. Therefore, any point on segment £;; is nec-
essarily below [above] the points on segments £;, , and
li;., so there must always be a local minimum [maxi-
mum| between segments £;, , and /;,,,. Finally, note
that since these extrema must alternate between min-
ima and maxima, the extremum between £;, _, and £
is distinct from the extremum between /;; and ¢

ij41
it
Objective #4. We prove that the shortest path pro-
vides something stronger: it minimizes the maximum
steepness, and, subject to that, minimizes the second
maximum steepness, and so on. We call this lexico-
graphically minimizing the maximum steepness.
In the full version [I4] we prove the following.

Proposition 1 A shortest path from £y to £, in polygon
P lexicographically minimizes the maximum steepness.

This completes the proof of Theorem O

We now turn to Objective #2, minimizing the number
of links/bends. First note that the number of links is one
more than the number of bends, so the two versions are
equivalent (unlike in 2.5D). We make use of a minimum
link path in polygon P from ¢; to ¢,, which can be
found in linear time using Suri’s minimum link path
algorithm [I7]. (Suri’s algorithm finds a minimum link
path from a source point to a target point in a simple
polygon, but, internally, it finds a minimum link path
from a segment (a visibility window) to the target point,
so it can easily be extended to deal with source and
target segments.) This path may have bends that are
not at the input line segments, but each such bend b
can be replaced by two bends at the line segments just
before and after b.

Theorem 2 Let m be a minimum link path from £y to
L, in P. Then the points where m intersects the seg-
ments provide a 1.5D terrain with at most twice the
minimum number of bends.

Proof. The number of bends in 7 is clearly a lower
bound, and each bend in 7 is replaced by at most two
bends in the terrain. O

3 Local Extrema

We now turn to 2.5D terrains, as defined in the Intro-
duction. Note that we allow input triangulations that
do not include all the convex hull edges of the projected
2D points (to model triangulating a general shape). In
this section we consider Objective #1, minimizing the
number of local extrema.

Gray et al. [9] showed that this problem is NP-hard
for 2.5D terrains. Therefore, we will examine a special
case where we have a triangulation of a polygon, i.e., all
points are on the boundary of the triangulation.

Theorem 3 There is an O(n*) dynamic programming
algorithm to minimize the number of extrema for impre-
cise 2.5D terrains when the triangulation is of a poly-
gon.

The following claim (proved in the full version [14])
shows that we can restrict to a discrete set of elevation
values.

Claim 4 Let E = {by,t1,...,bn,tn} denote the set z-
values of the bottom and top endpoints of the input in-
tervals. Then there exists an optimal solution z* so that
zf €E foralli=1,...,n.

34" Canadian Conference on Computational Geometry, 2022

Figure 3: Splitting subproblem S;; into S' := Sy ;
(pink) and S? := S, (yellow).

We will now describe the algorithm. Label the ver-
tices around the polygon pi,...,p, in clockwise order.
For each edge p;p; of the triangulation with ¢ < j, we de-
fine a subproblem S; ;(z;, v, B, 2, ¢, B;). This records
the minimum number of internal extreme plateaus for
the subpolygon p;,...,p;, where z; € E is the ele-
vation for p;, «; € {T,F} records whether there are
above (higher) elevations connected to p;’s plateau,
B; € {T, F'} records whether there are below (lower) ele-
vations connected to p;’s plateau, and similar for j. Here
“Internal” means that we do not count the plateau(s)
of p; and p;. It is easy to add those plateaus into the
count, since p;’s plateau is a local extremum in .S; ; iff
—a; V —f; (i.e., there are no higher elevations connected
to its plateau or there are no lower elevations connected
to its plateau) and similarly for p;. Furthermore, they
are in the same plateau iff z; = z;.

The algorithm computes all S;; entries us-
ing dynamic programming. Initialize by setting
Si.5(2i, as, Biy 25, a5, B5) to oo when the parameters are
incompatible, meaning that a z value is outside its in-
terval, or the «, 8 values contradict the z values, e.g.,
o; = F but z; > z;, etc.

We solve for S; ;(zi, i, B, 25, o, B5) for compatible
parameter values, starting with smaller values of j — @
before larger values. When j = i+ 1, there are only two
points (i.e., the subpolygon is an edge), and the number
of internal extrema is zero.

For j > i + 1, there is a (unique) triangle p;, px, p;
with ¢ < k < j. Our goal is to combine solutions to
the two subproblems S;j and Sy ; for various z,a, 3
values. See Figure Si i inherits z;. Sy ; inherits z;.
For zj, we try all values in F (the same value in both
subproblems). The above/below values are not simply
inherited, since, for example, a T value for a; in S; ;
can come from a F' value in S, ;. if z; provides the above
elevation.

To simplify notation, let S be Si r and S? be Sk.j-
Let o} be the a-value(s) of p; in S, let aj be the a-
value(s) of pi in S, and etc. for the 3 values and for
52, We have a; = o} V (z; > 2z;). This tells us which
values of o} to try. Similarly for 8} and 0@7 ﬁ?

We next specify which above/below values to try for
pi in the two subproblems. We will consider all pos-

sibilities for the final above/below values ay, S of pg
in S; ;. Namely, (T,T),(T,F),(F,T),(F,F). We have
ap = ajVaz, i.e., there are elevations above py,’s plateau
in .S; ; iff there are elevations above py’s elevation in S 1
or in S2. This tells us which values of o}, and a3 to try
for a given choice of aj. Similarly for Sj.

Finally, we set S; ; to be the minimum value, among
all these choices, obtained as S + S? + § where 6§ €
{0,1} is 1 iff pi’s plateau is an extremum distinct from
the plateaus of p; and pj, i.e., iff (may V =f8k) A (2 #
zi) N (zi # 25).

The final minimum number of local extrema is ob-
tained by taking the best of all the S; , values, after
adding 0, 1, or 2 extrema for p; and p,, as appropriate.

The algorithm is correct because we have considered
all possibilities for the two subproblems.

Runtime. There are O(n) edges p;p; in the trian-
gulation, and for each, we try O(n?) elevations and
above/below values, for a total of O(n®) subproblems.
To solve a subproblem for .S; ; we try O(n) values for zj
and a constant number of combinations of above/below
values. Thus the runtime of the algorithm is O(n?).

4 Coplanar Features

In this section, we explore the problem of minimiz-
ing the number of patches/bends. First, we give a 5-
approximation algorithm for a triangulation in a strip
(as shown in Figure @ Then, we show that the general
case is NP-complete for both objectives.

In general, these two objectives are not equivalent,
see Figures [4] and f] However, they are equivalent for
a triangulation of a polygon—as we prove in the full
version [14], the number of patches will be the number
of bends plus one.

4.1 An algorithm for a strip triangulation

A strip triangulation is a special case of a triangulation
of a polygon, so we can give an algorithm that works
for both objectives.

Theorem 5 There is a poly-time 5-approximation al-
gorithm for the problem of minimizing the number of
bends/patches when the input is restricted to a strip.

Let the triangles along the strip be T, ..., Ty, where
N =n — 2. We first greedily find the maximum index
j such that triangles Ty,...,7; can be coplanar. To
test a given j, use a linear program whose variables are
the z values of the imprecise points and the coefficients
A, B, C of the plane z = Ax+ By + C that the triangles
should lie in. Find the maximum j using binary search.

Note that any precise terrain for 717,...,T;4+1 must
have at least one bend. Let k > j be the minimum in-
dex such that triangle T}, shares no vertices with 7};. The

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

y=1 4 A

m [0 1/3
y=3 o {0}
y=0

A {1}

Figure 4: Proving that minimizing the number of bends
is not always equivalent to minimizing the number of
patches. The central point (drawn with a big black
square) is the only one with a non-trivial z-interval,
viz. [0,1/3].

B :=1/3
e {0}

A {1}

B e {0}

A {1}

Figure 5: Solution (top) : If we use the top end of the
black interval, we get 5 patches (optimal) and 7 bends.
Solution (bottom) : If we use the bottom end of the
black interval, we get 6 patches and 6 bends (optimal).

plan is to start the next greedy step from Tj. Observe
that the situation is as shown in Figure[G} the last edge
of T} is ab; the first edge disjoint from ab is pg which
is the first edge of Tj; and all intermediate triangles
Tj+1,...,Tk—1 include vertex a (without loss of gener-
ality, assume a and p lie on the top side of the strip).
Note that the elevations of a and b have been fixed by
the first greedy step, and the elevations of p and ¢ will
be fixed by the second greedy step. By induction, it
suffices to choose elevations for the remaining vertices,
the ones that lie strictly between b and g along the bot-
tom of the strip, so that the resulting precise terrain on
T1,...,Tk_1 is a 5-approximation of the optimum.
Observe that triangles T)j1o,...,T;—3 form a fan F'
between apex a (with fixed elevation) and base edges
(with imprecise elevations) on the bottom of the strip.
Two adjacent triangles in this fan are coplanar iff their

Figure 6: The first iteration of the algorithm. Fan F'is
colored in dark orange.

base edges are colinear. This reduces the problem to a
1.5D imprecise terrain problem in the zz-plane through
the bottom of the strip. We use the linear time algo-
rithm from Theorem [2]to find a 2-approximation for the
minimum number of bends.

Let OPT be an optimum solution and let B* be the
number of bends in OPT on edges up to and including
pq. Let B be the number of bends on these edges pro-
duced by the above algorithm. Let s* be the minimum
number of bends for internal edges of the fan F'. Then
we have: B* > 1+4s™* since there is at least 1 bend before
Tj+1, and s* bends within F'; and B < 5 + 2s*, since
there are five bends outside F' (on the labelled edges
in Figure [6) and at most 2s* inside F' by Theorem
Thus 5B* > 5+ 58 > B. Applying induction proves
the approximation ratio is correct for the whole input.

4.2 NP-hardness for the general setting

We show that the objective of minimizing the number of
patches is NP-complete for the case of a general triangu-
lation without holes, using a reduction from Monotone
Rectilinear Planar 3-SAT. The same reduction shows
that minimizing the number of bends is NP-complete—
see [16].

Theorem 6 Minimizing the number of patches [or
bends] is strongly NP-complete in the general setting.

Containment in NP is proved in the full version [14]—
a non-deterministic guess for the patches/bends can be
verified in polynomial time using linear programming.

Reduction details. The reduction will be from the
NP-complete problem Monotone Rectilinear Planar 3-
SAT [4]. In this variant of 3-SAT, each clause has either
three positive literals or three negative literals, and the
input includes a planar representation where each vari-
able v is represented by a thin vertical rectangle along
the line = 0, each positive [negative| clause is repre-
sented by a thin vertical rectangle at a positive [nega-
tive, resp.] z-coordinate, and there are horizontal line
segments (“wires”) joining each clause rectangle to the
rectangles of the variables in the clause. We modify the
representation by shrinking each clause rectangle to a
square and adding vertical segments to the wires. See
Figure [7] For n variables and m clauses, the represen-
tation can be on an O(m) x O(n + m) grid.

Given an instance of Monotone Rectilinear Planar 3-
SAT &, we will construct an imprecise 2.5D terrain.

Variable gadget and component. The wariable
gadget for variable v, shown in Figure consists of
four triangles: two selector triangles (in white); a true
triangle (green striped), which we force onto the plane
x = z; and a false triangle (checkered), which we force
onto the horizontal plane z = 0. The z-interval of the

34" Canadian Conference on Computational Geometry, 2022

Figure 7: An instance of Monotone Rectilinear Planar
3-SAT, modified so the clauses have fixed height.

leftmost vertex of the gadget extends between the two
planes, which permits the two selector triangles to be
coplanar with the true triangle or with the false tri-
angle. Thus, if the variable gadget is limited to two
patches, the selector triangles “select” a true/false value
for the variable. The gadget for variable v is placed in-
side v’s input rectangle—see Figure for the exact
x,y-coordinates and z-intervals.

To model the wires in the input, we expand v’s vari-
able gadget to a variable component by constructing
chains of path triangles as shown in Figure[8b} The as-
sociated z-intervals are large enough to permit all path
triangles to be coplanar with v’s true triangle (lying in
the plane x = z) or with v’s false triangle (lying in the
horizontal plane z = 0). If the variable component is
limited to two patches, then the choice made by the se-
lector triangles is transmitted to all the path triangles.

Clause gadget. The gadget for clause ¢, shown in
Figure Bd and [J] consists of three triangles sharing a
centre vertexr and joining the three final vertices of
the chains corresponding to the variables in the clause.
The z-interval of the central vertex is strictly above the
z = 0 plane for a positive clause, and strictly above
the z = z plane for a negative clause. Therefore, for
a positive [negative] clause, if all three chains are in
the z = 0 plane [the x = z plane] (corresponding to
setting the literals false), then the three triangles of the
clause gadget must form three patches. However, by
making the z-interval of the central vertex large enough,
we ensure that if at least one chain lies in the other
plane (corresponding to setting the literal true), then
the central vertex may be chosen to lie in the plane
of the other three vertices, thus creating one coplanar
patch out of the three clause triangles.

Completing the triangulation. The variable compo-
nents and clause gadgets can be completed to a triangu-
lation by filling in the holes with spike triangles, each
of which has one new vertex that is off the xy-integer
grid and that we force to a z-coordinate at least four
times lower than anything constructed so far. By this

choice of z, each spike triangle must form one patch.
See Figure Figure illustrates the full reduction
from the 3-SAT instance in Figure [7]

Lemma 7 Let k = 2n +m + s, where s is the number
of spike triangles. Then there is a satisfiable truth-value
assignment for ® if and only if there is a selection of el-
evations z that creates a terrain with at most k patches.

Proof. (sketch) Suppose there is a satisfiable truth-
value assignment for ®. Choose elevations that put the
variable component of each true variable in the x = z
plane and the variable component of each false variable
in the z = 0 plane. This creates 2n patches. Since each
clause has at least one true literal, we can choose the
elevation of the centre vertex of each clause gadget so
that the clause gadget uses one patch. This creates m
patches. Finally, each spike triangle is one patch, so the
total number of patches is 2n +m + s = k.

For the other direction, suppose there is a precise ter-
rain with at most k patches. Each spike triangle forms
one patch, each variable component forms at least two
patches, and each clause gadget forms at least one patch
(note that variable components do not share edges with
clause gadgets). Thus each variable component must
use two patches (thus forcing the three outer vertices
of each clause gadget to respect the true/false choices),
and each clause gadget must use one patch (thus requir-
ing at least one of its literals to be true). O

5 Surface Area

We show that the surface area of an imprecise 2.5D ter-
rain can be minimized using Second Order Cone Pro-
gramming [I, Section 4.4.2] which is an extension of
Linear Programming, with additional constraints of the
form ||Az+b|| < ¢" 2 +d, where || - || represents the Eu-
clidean (Ls) norm. Second Order Cone Programs can
be solved with additive error € in time polynomial in the
size of the input and log(%) using interior point meth-
ods. This is efficient, although not polynomial time.

We use variables z;,7 = 1,...,n for the elevations,
and the linear constraints b; < z; < t; to ensure that
each elevation value is within its interval. For each tri-
angle T, a variable sy will upper bound the area of T,
via the constraint area(T) < sp. Then minimizing the
linear objective function) ., s7 guarantees that the
total surface area is minimized.

We only need to show that area(T) < sp is a valid
SOCP constraint. If T has imprecise vertices p1, ps, ps3,
then area(T) is 3||(p2—p1) % (ps—p1) ||, where x is cross
product. Because z and y are fixed, (ps —p1) X (p3 —p1)
is a linear function of the z variables.

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

(z+1/3,2—1/3,[1/3z,2 +1/3])

(0,9, +1,[0,0])

Goe+ 30530

(*1-?/:~‘[*1>0D (0,90, [0‘0])

(% Yo — é, [0.0]) (z,y,[z,0]) Vz<0

(x,y.[0,2]) V2 >0 (z,y,(0,2])

(0,9, —1,[0,0])

=0

w

(a) Variable gadget

(b) Variable component

(c) Clause gadget (positive literals)

Figure 8: Gadgets for the NP-hardness reduction.

(x+1/3,2—1/3,[1/3z,2+1/3])

U
(2. [0,2]) v

w

Figure 9: A 3D depiction of the clause gadget from

Figure

6 Min Max Steepness

We show that minimizing the maximum steepness of an
imprecise 2.5D terrain can be formulated as a Second
Order Cone Program (as defined in the previous sec-
tion). The steepness of triangle T lying on the plane
z = Arx + Bpy + Cr is the Ly norm of the gradient,
ie., |[(Ar, Br)|.

As above, we use variables z; for the elevations, to-
gether with the linear constraints b; < z; < t;. For
each triangle T', we introduce variables Ar, By, Cr rep-
resenting the coefficients of the plane containing 7', as
captured by the constraints z; = Arxz; + Bry; + Cr
for each vertex (x;,y;,%;) of T. Finally, we add con-
straints ||(Ar, Br)|| < F for one new variable F'. Then
minimizing F' will minimize the maximum steepness.

7 Conclusion

For imprecise 1.5D terrains, we gave linear time exact
algorithms for three objectives, but could only achieve
a 2-approximation for minimizing the number of bends.
We believe that minimizing the number of bends for
an imprecise 1.5D terrain is weakly NP-hard. Is the
problem Fixed Parameter Tractable in the number of
bends?

Another direction worth exploring is imprecise 2.5D
terrains when the triangulation is not fixed, so the input
consists only of imprecise points, and the problem is to
find precise points and a triangulation for the given ob-

Figure 10: A portion of the final construction showing
how spike triangles (in blue) fill in the triangulation.

jective. Even if the points are given precisely, choosing
the best triangulation can be NP-hard, as shown by De
Kok et al. [5] for minimizing extrema. Are any of the
other objectives NP-hard when the triangulation is not
fixed, either for precise or imprecise points?

References

[1] S. Boyd and L. Vandenberghe. Convez Optimization.
Cambridge University Press, 2004.

[2] B. Chazelle. Triangulating a simple polygon in linear
time. Discrete & Computational Geometry, 6(3):485—
524, 1991.

[3] Y.-J. Chiang and R. Tamassia. Optimal shortest path
and minimum-link path queries between two convex
polygons inside a simple polygonal obstacle. Interna-
tional Journal of Computational Geometry € Applica-
tions, 7:85—121, 1997.

[4] M. de Berg and A. Khosravi. Optimal binary space par-
titions in the plane. In M. T. Thai and S. Sahni, editors,
Computing and Combinatorics, volume 6196 of Lecture
Notes in Computer Science, pages 216—225, Berlin, Hei-
delberg, 2010. Springer Berlin Heidelberg.

[5] T. De Kok, M. Van Kreveld, and M. Loffler. Generating
realistic terrains with higher-order delaunay triangula-
tions. Computational Geometry, 36(1):52-65, 2007.

[6] A. Driemel, H. Haverkort, M. Loffler, and R. Silveira.
Flow computations on imprecise terrains. Journal of
Computational Geometry, 4(1):38-78, 2013.

[7] C. Gray. Shortest paths on uncertain terrains. Master’s
thesis, University of British Columbia, 2004.

34" Canadian Conference on Computational Geometry, 2022

[16] G. Stroud. Computing realistic terrains from impre-
cise elevations. Master’s thesis, University of Waterloo,
2022.

[17] S. Suri. A linear time algorithm for minimum link paths
inside a simple polygon. Computer Vision, Graphics,
and Image Processing, 35(1):99-110, 1986.

Figure 11: The resulting imprecise 2.5D terrain con-
structed from the instance of 3-SAT in Figure m

[8] C. Gray and W. Evans. Optimistic shortest paths on
uncertain terrains. In Proceedings of the 16th Canadian
Conference on Computational Geometry (CCCG’04),
pages 68—71, Montréal, Canada, 2004.

[9] C. Gray, F. Kammer, M. Loffler, and R. I. Silveira.
Removing local extrema from imprecise terrains. Com-
putational Geometry, 45(7):334-349, 2012.

[10] C. Gray, M. LofHler, and R. L. Silveira. Smoothing im-
precise 1.5D terrains. International Journal of Com-
putational Geometry & Applications, 20(04):381-414,
2010.

[11] V. Keikha, M. Loffler, A. Mohades, and Z. Rahmati.
Width and bounding box of imprecise points. In Pro-
ceedings of the 30th Canadian Conference on Computa-
tional Geometry (CCCG’18), pages 142-148, Winnipeg,
Canada, 2018.

[12] Y. Kholondyrev. Optimistic and pessimistic shortest
paths on uncertain terrains. Master’s thesis, University
of British Columbia, 2007.

[13] M. LofHler and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Computational Geometry, 43(4):419 — 433, 2010.

[14] A. Lubiw and G. Stroud. Computing realistic terrains
from imprecise elevations. arziv, 2022. to appear.

[15] F. A. Potra and S. J. Wright. Interior-point methods.
Journal of Computational and Applied Mathematics,
124(1):281-302, 2000. Numerical Analysis 2000. Vol.
IV: Optimization and Nonlinear Equations.

	Introduction
	1.5D Terrains
	Local Extrema
	Coplanar Features
	An algorithm for a strip triangulation
	NP-hardness for the general setting

	Surface Area
	Min Max Steepness
	Conclusion

