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Uniformly Monotone Partitioning of Polygons Revisited∗
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Abstract

Partitioning a polygon into simple pieces is a funda-
mental problem in computational geometry with a long
history. In this paper, we revisit the problem of parti-
tioning a simple polygon P with n vertices (including
R reflex vertices) and no holes into a minimum number
of uniformly monotone subpolygons using open line seg-
ments drawn inside P . We present an O(nR log n+R5)-
time algorithm for the problem by adding diagonals be-
tween pairs of vertices of P . When Steiner points can
be placed on the boundary of P and the subdivision is
formed by adding diagonals between pairs of vertices of
P including Steiner points, we present an O(n + R5)-
time algorithm. We present an O(n + R4)-time algo-
rithm when Steiner points can be placed anywhere in
P . Our algorithms improve upon the previously best
ones for polygons with a small number of reflex vertices
relative to the total number of vertices. We also present
simple and efficient 2-approximation algorithms.

1 Introduction

Partitioning a polygon into disjoint simple pieces, such
as triangles, trapezoids, convex polygons, and star-
shaped polygons, is an important and fundamental
problem in computational geometry [2, 3, 7, 8, 11, 12].
A classic and typical example is the triangulation of a
simple polygon in the plane [2].

A simple polygon is called monotone with respect to a
line ℓ if for any line ℓ′ perpendicular to ℓ the intersection
of the polygon with ℓ′ is connected. The problem of
partitioning a polygon into monotone subpolygons has
been well studied [7, 9]. Many geometric algorithms
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run faster asymptotically for monotone polygons than
for more general ones, and it is often straightforward to
implement algorithms for monotone polygons [12].

In this paper, we study the problem of partitioning a
simple polygon with no holes into a minimum number
of uniformly monotone subpolygons using diagonals
(open line segments lying in the interior of the polygon)
between pairs of vertices of the polygon. A partition
is uniformly monotone with respect to a line ℓ if every
subpolygon in the partition is monotone with respect
to ℓ. Among all uniformly monotone partitions, we
wish to compute one that minimizes the number of
subpolygons in the partition. Below we define the
problem formally.

Minimum Uniformly Monotone Partition: Given
a simple polygon P with n vertices (including R reflex
vertices) and no holes, find a pair (ℓ∗,P∗) of a line
ℓ∗ and a uniformly monotone partition P∗ of P with
respect to ℓ∗ such that the number of subpolygons
in P∗ is the minimum among all pairs (ℓ,P) of lines
ℓ and uniformly monotone partitions P with respect to ℓ.

We call such a pair (ℓ∗,P∗) a minimum partition-pair,
and such a partition P∗ a minimum partition of P . In
the rest of the paper, we may simply refer to the mini-
mum uniformly monotone partition problem as the min-
imum partition problem.

We also consider two variants of the minimum par-
tition problem with additional vertices, called Steiner
points. Steiner points are added as part of the partition
to reduce further the number of subpolygons. There are
two ways of adding Steiner points, either placing them
only on the boundary of P or placing them anywhere in
P . See Figure 1.

1.1 Previous works

Lee and Preparata [9] gave an O(n log n)-time plane
sweep algorithm to partition a simple polygon with
n vertices into monotone pieces, but not necessarily
into a minimum number of monotone pieces. Liu and
Ntafos [10] studied the minimum partition problem and
gave an O(nR2 log n+nR3+R5)-time algorithm for the
problem without using Steiner points. Using Steiner
points lying on the boundary of the polygon, they gave
an O(nR3 log n+R5)-time algorithm to compute a min-
imum partition.
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Figure 1: Uniformly monotone partitions of P with re-
spect to the y-axis. (a) A minimum partition (8 pieces)
with no Steiner points. (b) A minimum partition (7
pieces) with two Steiner points (white squares) on the
boundary of P . (c) A minimum partition (6 pieces) with
three Steiner points (white squares) in P .

Wei et al. [13] considered the minimum partition
problem for a polygon with n vertices and h holes. Us-
ing Steiner points lying in the polygon, they presented
an O(K(n log n+ h log3 h))-time algorithm to compute
a minimum partition of the polygon, where K is the
number of edges of the polygon’s visibility graph.

For the problem of partitioning a polygon into a min-
imum number of subpolygons such that each subpoly-
gon is monotone with respect to some line, Keil [6]
gave an O(n4R)-time algorithm for polygons with n ver-
tices and no holes without using Steiner points. They
also showed that the decision version of the problem is
NP-complete for polygons with holes but without using
Steiner points.

1.2 Our results

Our results are fourfold. First, we present an
O(nR log n+R5)-time algorithm for the minimum par-
tition problem with no Steiner points. The algorithm
by Liu and Ntafos [10] is claimed to take O(nR2 log n+
nR3+R5) time. But this may not hold for simple poly-
gons with vertices of interior angle π and the running
time may increase to O(n2 + nR3 +R5). We give more
details in Section 3.1. Our algorithm runs faster than
their algorithms for R = o(n1/2) while the running times
are the same asymptotically for R = Ω(n1/2).
Second, we present an O(n+ R5)-time algorithm for

the minimum partition problem when Steiner points
can be placed on the boundary of P . Observe that
the algorithm takes only O(R5) time in addition to the
time linear to the input size. It runs faster than the
O(nR3 log n + R5)-time algorithm by Liu and Ntafos

for R = o(n1/2 log1/2 n) while the running times are the

same asymptotically for R = Ω(n1/2 log1/2 n).
Third, we present an O(n + R4)-time algorithm for

the minimum partition problem when Steiner points can
be placed anywhere in P . It takes only O(R4) time in
addition to the time linear to the input size, and thus
it runs fast for R small relative to n. The algorithm by

Wei et al. runs in O(Kn log n) time for this problem,
but K can be Θ(n2).

Finally, we present simple factor-2 approximation al-
gorithms for the minimum partition problem, that is,
the number of subpolygons in the partition returned
by our algorithm is at most twice the number of sub-
polygons in a minimum partition. We present an
O(n log n)-time algorithm with no Steiner points, and
an O(n + R log n)-time algorithm using Steiner points
lying on the boundary of P . The solution returned by
the latter algorithm is also a 2-approximation for the
case that Steiner points can be placed anywhere in P .

Sketches of our algorithms. Our algorithms for the
minimum partition problem are based on the work by
Liu and Ntafos [10]. Given a line ℓ, their algorithm
first computes peaks, each of which is a vertex of P and
a source of local non-monotonicity with respect to ℓ.
Then the algorithm removes the peaks using a minimum
number of non-intersecting diagonals between vertices
and obtains a minimum partition of P with respect to
ℓ in O(n log n+ nR+R3) time.

To compute a minimum number of non-intersecting
diagonals between vertices, they use a circle graph G.
The vertices of G correspond to the peaks in order along
the boundary of P . There is a chord between two ver-
tices of G if and only if their corresponding peaks can be
removed by adding the diagonal between them. Since
each peak can be removed by a diagonal and each diag-
onal removes at most two peaks, a minimum partition
of P can be obtained by computing a maximum inde-
pendent chord set (MICS) of G in O(m3) time for m
vertices in G. By running this algorithm for each of
O(R2) distinct lines defined by pairs of reflex vertices,
Liu and Ntafos compute a minimum partition-pair of P
in O(nR2 log n+ nR3 +R5) time.

Our algorithms also construct circle graphs and com-
pute their MICSs. Our algorithms are different to the
ones by Liu and Ntafos in three aspects. The first dif-
ference is that our algorithms use a data structure for
geodesic queries while the algorithms by Liu and Ntafos
compute visibility polygons repeatedly for vertices and
edges in peaks. From this, we reduce the time for com-
puting diagonals.

The second difference is that our algorithm maintains
and updates the vertices and the chords of the circle
graph efficiently over O(R2) distinct lines. The algo-
rithm by Liu and Ntafos constructs the circle graph
from scratch for each of the lines. Our algorithm uses
certain coherence between the circle graphs induced by
two lines of consecutive orientations among the orien-
tations defined by pairs of reflex vertices. Imagine that
a line ℓ rotates. Then the circle graph G induced by
ℓ changes at certain orientations: a vertex of G is re-
moved, a new vertex is inserted to G, a chord of G is
removed, or a new chord is inserted to G. By keeping
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track of these changes in the order of orientations using
a priority queue, our algorithm maintains and updates
the circle graph and the minimum number of monotone
subpolygons efficiently for O(R2) lines.

The third difference is that our algorithm computes
MICSs without computing their corresponding parti-
tions explicitly while the algorithm by Liu and Ntafos
computes a partition of P explicitly for each of O(R2)
distinct lines. Whenever the circle graph is updated,
our algorithm computes an MICS, but it does not com-
pute the corresponding partition explicitly. Instead, it
maintains and updates the minimum number of mono-
tone subpolygons for the MICS. Once our algorithm is
done with O(R2) lines, it computes a minimum par-
tition P∗ using the line corresponding to the minimum
number of monotone subpolygons. This leads to further
improvements on the time complexity.

When Steiner points are allowed to be placed any-
where in the polygon, the cardinality of an MICS of
the circle graph equals the cardinality of the maximum
matching of the circle graph. We show that the circle
graph is a chordal bipartite graph under updates, and
thus its maximum matching can be computed efficiently.

Our approximation algorithms achieve factor 2 by
computing the minimum number of peaks of P among
all orientations. This is because the number of subpoly-
gons in a minimum partition cannot be less than half of
the number of peaks.

2 Preliminaries

We denote by P the input simple polygon with n ver-
tices (including R reflex vertices) and no holes. We as-
sume that P is given as a sequence of vertices in clock-
wise order along its boundary. For a compact set X, we
use ∂X to denote the boundary of X. For a point p, we
denote by y(p) the y-coordinate of p.

A diagonal is an open line segment that connects two
vertices of P and lies in the interior of P . A set of
non-intersecting diagonals induces a partition of P into
subpolygons.

For a partition P of P , we denote by |P| the num-
ber of subpolygons in P. A minimum partition of P
with respect to a given line ℓ, called the scan line, is a
uniformly monotone partition P∗

ℓ with respect to ℓ such
that |P∗

ℓ | ≤ |Pℓ| for any uniformly monotone partition
Pℓ of P with respect to ℓ. A minimum partition of P
is a uniformly monotone partition P∗ of P with respect
to some scan line such that |P∗| ≤ |P| for any minimum
partition P of P with respect to some scan line.

For two points p and q in the plane, we denote by pq
the line segment connecting them. Two points p, q ∈ P
are visible to each other if pq is contained in P . Two
edges e1, e2 of P are visible to each other if there are
points p ∈ e1, q ∈ e2 such that p and q are visible to

each other.
A super-vertex of P is a maximal chain of consecutive

and collinear vertices of P . A super-vertex is reflex if
both its endpoints are reflex vertices.

For a fixed scan line ℓ, a peak is a reflex vertex or a
reflex super-vertex v of P such that both neighboring
vertices of v lie in one side of the line through v and
perpendicular to ℓ. A peak with respect to ℓ is called
a normal-peak if it is a reflex vertex of P , and a super-
peak if it is a reflex super-vertex of P . The peaks are
sources of local non-monotonicity with respect to ℓ. See
Figure 2(a).

A super-peak and a normal-peak are visible to each
other if the super-peak has a vertex that is visible from
the normal-peak. Two super-peaks are visible to each
other if there are two vertices, one from each super-peak,
that are visible to each other. See Figure 2(b).

(b)(a)

Figure 2: (a) The vertices of P are shown as white disks,
black disks, and black squares. Black disks are nor-
mal peaks and red chains (connecting black squares) are
super-peaks with respect to the y-axis. (b) Two super-
peaks are visible to each other, and a normal-peak and
a super-peak are visible to each other.

Missing proofs and details can be found in the full
version of the paper.

3 Maximum independent chord set of a circle graph

In this section, we describe the approach of using a circle
graph given by Liu and Ntafos [10], and give an outline
of their algorithm using the approach.

We fix the scan line to be the y-axis throughout this
section unless stated otherwise. We call a normal-peak
v a top normal-peak if both neighboring vertices of v
lie above v, and a bottom normal-peak otherwise. Simil-
larly, we call a super-peak a top super-peak if both neigh-
boring vertices of the chain (super-peak) lie above it,
and a bottom super-peak otherwise. A diagonal is full
if it connects a top peak u and a bottom peak v with
y(u) ≥ y(v). Thus, by adding a full diagonal, two peaks
are removed simultaneously.

A minimum partition of P with respect to a scan line
can be obtained by adding a minimum number of non-
intersecting diagonals that remove all peaks of P with
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respect to the scan line. Observe that each peak can
be removed by a diagonal and each diagonal removes
at most two peaks. Thus, a minimum partition is ob-
tained by finding a maximum number of full diagonals
such that no peak is incident to more than one full di-
agonal. The algorithm by Liu and Ntafos computes a
maximum number of full diagonals using a circle graph
G. The vertices of G correspond to the peaks in one-
to-one mapping in order along ∂P . There is a chord
between two vertices of G if and only if there is a full
diagonal between the peaks corresponding to the ver-
tices. A minimum partition of P can be obtained by
computing an MICS of G.

Lemma 1 ([10, 13]) The number of subpolygons in a
minimum partition of P with respect to a fixed scan line
is Np−Nm+1, where Np is the total number of peaks of
P with respect to the scan line and Nm is the cardinality
of an MICS of the circle graph induced by P and the scan
line.

3.1 Minimum partition algorithms by Liu and Ntafos

Using Lemma 1, Liu and Ntafos [10] gave an O(n log n+
nR+R3)-time algorithm that computes a minimum par-
tition of P with respect to a fixed scan line using no
Steiner points. Their algorithm first reduces the min-
imum partition problem to the problem of computing
an MICS of the circle graph G induced by P and the
scan line. The algorithm finds all the top and bottom
peaks as vertices of G. Then it computes the visibility
polygon of each top peak using an O(n)-time algorithm
for finding the visibility polygon of a point in a simple
polygon with no holes. From the visibility polygon of a
top peak u, it identifies all bottom peaks v such that the
open line segment connecting u and v is a full diagonal.
Each such full diagonal contributes a chord to G. Thus,
G can be computed in O(nR) time.

They gave an O(m3)-time algorithm to compute an
MICS of a circle graph with m vertices. Since there are
O(R) vertices in G, the algorithm computes an MICS
of G in O(R3) time.

After the algorithm partitions P into subpolygons us-
ing the set of full diagonals corresponding to the MICS,
no subpolygon in the partition has a full diagonal. The
algorithm removes all the remaining peaks in the par-
tition in O(n log n) time using the subdivision algo-
rithm by Lee and Preparata [9]. Thus, in total it takes
O(n log n+ nR+R3) time.
Liu and Ntafos extend their algorithm to find a min-

imum partition-pair of P . There are O(R2) disjoint in-
tervals of orientation, which are defined by pairs of reflex
vertices, such that the set of peaks and the set of full
diagonals remain the same for any orientation in an in-
terval. With this observation, Liu and Ntafos claim that
a minimum partition-pair of the input polygon can be

computed in O(nR2 log n+nR3+R5) time, by running
the algorithm for a fixed scan line for O(R2) directions,
once for each orientation interval.

However, their algorithms may take more time than
what they claim for simple polygons with vertices of
interior angle π. Their algorithm for a fixed scan line
works as follows. For each vertex u in a super-peak, it
computes the visibility polygon of u and identifies the
vertices v such that there is a full diagonal connecting
u and v. Since there can be Θ(n) non-reflex vertices in
O(R) super-peaks, the time for computing the visibility
polygons increases to O(n2). Then their algorithm takes
O(n2+R3) time for a fixed scan line, and O(n2+nR3+
R5) time for finding a minimum partition-pair of P .

When Steiner points are allowed to be placed on ∂P ,
there is a full diagonal pq between a top super-peak
u and a bottom super-peak v for the y-axis scan line
and a point p ∈ u and a point q ∈ v if y(p) ≥ y(q),
and uv is a diagonal. See Figure 1(b). The algo-
rithm by Liu and Ntafos considers each super-peak as
an edge of P and computes the visibility polygon of the
edge. Using the visibility polygons, it computes pairs
of super-peaks visible to each other and Steiner points
lying on them together with full diagonals connecting
them. The rest of the algorithm is the same with the
algorithm for no Steiner points. Using an O(n log n)-
time algorithm for finding the visibility polygon of an
edge in a simple polygon with no holes, their algorithm
takes O(nR log n + R3) time for a fixed scan line, and
O(nR3 log n+R5) time for finding a minimum partition-
pair.

4 Minimum uniformly monotone partition

We present our algorithms for the minimum partition
problem. In Section 4.1, we describe our approach for
maintaining the circle graph efficiently. In Sections 4.2-
4.4, we present algorithms, one using no Steiner points,
one using Steiner points lying on ∂P , and one using
Steiner points lying anywhere in P .

4.1 Maintaining the circle graph

We show certain coherence between the circle graphs
induced by two lines of consecutive orientations among
the orientations defined by pairs of reflex vertices. We
use this to compute a minimum partition of P efficiently,
provided that we have an algorithm, denoted by fd-algo,
for computing a minimum partition of P with respect
to a fixed scan line.

Imagine that the scan line ℓ rotates around the ori-
gin in clockwise by π, starting from the y-axis. Let ℓθ
denote the scan line of orientation θ ∈ [0, π). The set
of peaks and the set of full diagonals with respect to ℓθ
may change at certain discrete orientations θ at which
one of the following occurs.
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- Diagonal event : a diagonal connecting a top
normal-peak and a bottom normal-peak becomes
perpendicular to ℓθ.

- Peak event : an edge incident to a reflex vertex be-
comes perpendicular to ℓθ.

For super-vertices, it suffices to consider their peak
events for capturing changes to the circle graph because
a super-vertex induces no diagonal event. We construct
a circle graph G and maintain it for these events at dis-
crete orientations. Initially, we construct G as a com-
plete graph with vertices corresponding to reflex vertices
and reflex super-vertices of P in order along ∂P . The
circle graph induced by P and ℓθ is a subgraph of G. We
mark each vertex and each chord of G either as used or
unused. At a diagonal event, we change the mark of the
chord of G corresponding to the diagonal accordingly.
At a peak event, we change the mark of the vertex and
the chords of G corresponding to the peak accordingly.
Our algorithm works as follows. It constructs G as

above and mark the vertices and chords of G such that
the subgraph of G induced by used vertices and chords
is the circle graph induced by P and the y-axis. It also
computes the orientations of diagonal and peak events,
and stores them in a priority queue with the orienta-
tions as keys. Then it processes the events one by one
in order using the priority queue. For each event and its
orientation θ, it updates the number of peaks with re-
spect to ℓθ and updates the mark of the vertex or chord
of G corresponding to the event accordingly. Then it
computes an MICS of the subgraph of G induced by
the used vertices and chords. The number of subpoly-
gons in a minimum partition of P with respect to ℓθ is
determined by the number of peaks and the cardinal-
ity of the MICS by Lemma 1. It updates the minimum
number of subpolygons if the number with respect to ℓθ
is smaller than the minimum number we have so far.
After processing all the events, we have the line ℓ∗

such that the minimum partition P∗ of P with respect
to ℓ∗ is a minimum partition of P . Finally, we compute
a minimum partition P∗ of P with respect to ℓ∗, and
return (ℓ∗,P∗) as a minimum partition-pair.

We analyze the time complexity of the algorithm. We
denote by Tc, Tm and Tr the times for constructing the
circle graph induced by P and a fixed scan line, for com-
puting an MICS of the circle graph, and for computing
a uniformly monotone partition corresponding to the
MICS, respectively.

Lemma 2 We can compute a minimum partition of P
in O(n+R2 logR+Tc+R2Tm+Tr) time using O(n+R2)
space.

4.2 With no Steiner points

We present an O(nR log n+R5)-time algorithm for the
minimum partition problem with no Steiner points, im-

proving upon the result by Liu and Ntafos. Our algo-
rithm uses a geodesic query data structure for finding
full diagonals between super-peaks efficiently. Here, the
geodesic between any two points p, q ∈ P , denoted by
π(p, q), is the unique shortest path between p and q that
is contained in P .

Lemma 3 Given a top super-peak H1 and a bottom
super-peak H2 of P consisting of n1 and n2 vertices,
respectively, we can check if there is a full diago-
nal between a vertex of H1 and a vertex of H2 in
O(min{n1, n2} log n) time, after an O(n)-time prepro-
cessing using O(n) space.

By efficiently computing the chords corresponding to
pairs of super-peaks as in Lemma 3, and using the re-
sult in Section 4.1, we have our result for the minimum
partition problem with no Steiner points.

Theorem 4 Given a simple polygon P with n vertices
(including R reflex vertices) and no holes, we can com-
pute a minimum partition-pair of P in O(nR log n+R5)
time using O(n+R2) space, when no Steiner points are
allowed.

4.3 With boundary Steiner points

We present an O(n + R5)-time algorithm for the mini-
mum partition problem using Steiner points lying on the
boundary of P , improving upon the result by Liu and
Ntafos. Our algorithm first constructs the circle graph
efficiently using geodesic queries for vertices in peaks.

Lemma 5 We can compute full diagonals of P for the
y-axis scan line in O(n+R2 log n+R3) time.

After constructing the circle graph using Lemma 5,
our algorithm computes an MICS of the graph. Then,
it computes a minimum partition from the MICS effi-
ciently using ray shooting queries, and uses the result
in Section 4.1.

Theorem 6 Given a simple polygon P with n vertices
(including R reflex vertices) and no holes, we can com-
pute a minimum partition-pair of P in O(n+R5) time
using O(n+R2) space, using Steiner points lying on the
boundary of P .

4.4 With boundary and interior Steiner points

We give a sketch of an O(n+R4)-time algorithm for the
minimum partition problem using Steiner points lying
on the boundary and interior of P .
The number of subpolygons in a minimum partition

of P may be reduced if Steiner points are allowed to
be placed in the boundary and interior of P . See Fig-
ure 1(b,c). In Figure 1(c), a y-monotone chain connects
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a top peak and a bottom peak that are not visible to
each other.

We refer to a chain that connects a pair of vertices
of P including Steiner points on ∂P , and is contained
in the interior of P , except at the end vertices, as a
diagonal chain of P . For a scan line ℓθ, a diagonal
chain is full if it connects a top peak u and a bottom
peak v with yθ(u) ≥ yθ(v), and it is monotone with
respect to ℓθ. Here, yθ(p) for a peak p is the y-coordinate
of the point obtained by rotating p around the origin
in counterclockwise by θ. We use full diagonal chains,
instead of full diagonals, for constructing chords of a
circle graph. Then Lemma 1 holds for the circle graph.

We can show that there is a full diagonal chain be-
tween a pair of top and bottom peaks for scan line ℓθ
if and only if there are a vertex u in the top peak and
a vertex v in the bottom peak with yθ(u) ≥ yθ(v) such
that the geodesic between u and v is monotone with
respect to ℓθ. Thus, we can compute the chords of the
circle graph G by computing for each pair of peaks, the
geodesic between two vertices, one from each peak, and
checking if it is monotone with respect to ℓθ.

After constructing G, we compute an MICS of G.
Lemma 2 holds by modifying the definition of the diag-
onal event as follows.

- Diagonal event : the geodesic between a vertex in a
top peak and a vertex in a bottom peak becomes
monotone with respect to the scan line ℓθ.

It is known that the cardinality of an MICS of G
equals the cardinality of a maximum matching of G [13].
We can show that G is a chordal bipartite graph for any
fixed scan line, which is a bipartite graph such that ev-
ery cycle C of length at least 6 in the graph has an edge
not in C that connects two vertices in C. A maximum
matching of a chordal bipartite graph can be computed
efficiently [1, 14]. Thus, we can efficiently compute the
cardinality of an MICS of G.

By computing the cardinalities of MICSs as above
and using the result in Section 4.1, we compute the ori-
entation θ∗ corresponding to a minimum partition of P .
Then, we explicitly compute an MICS of the circle graph
induced by P and the scan line of orientation θ∗. We
compute a partition of P corresponding to the MICS as
follows. We place Steiner points on line segments lying
in P and perpendicular to the scan line, each of which is
incident to a reflex vertex of P . We assign each Steiner
point to the corresponding chord in the MICS, and con-
nect the assigned Steiner points for each chord in the
MICS to obtain a full diagonal.

From each remaining peak in the partition induced
by the full diagonals, we shoot a ray parallel to the scan
line of orientation θ∗, and add the line segment obtained
from the ray that lies in the subpolygon containing the
peak. The resulting partition is a minimum partition of
P . In total, it takes O(n + R4) time using O(n + R2)

space to compute a minimum partition-pair of P .

5 Approximation algorithms

We give simple factor-2 approximation algorithms for
the minimum partition problem. Observe that the num-
ber of subpolygons in a minimum partition cannot be
less than half of the number of peaks. Thus, any par-
tition of P with the scan line of the orientation, that
minimizes the number of peaks among all orientations,
induced by diagonals each removing at least one peak,
is a 2-approximation for the minimum partition prob-
lem. We compute such a partition in O(n log n) time
with no Steiner points, and in O(n + R log n) time us-
ing Steiner points lying on the boundary of P . The
solution returned by the latter algorithm is also a 2-
approximation for the case that Steiner points can be
placed anywhere in P .
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