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Fast Deterministic Approximation of Medoid in R

Ovidiu Daescu*

Abstract

For a set P of n points in R?, the medoid is the point
in P with the minimal sum of distances to P. We
present two new deterministic algorithms for approxi-
mating the medoid of P within a factor of (1 + ¢) in
time O(ne~%logn) and O(ne=? 4 nlogn), respectively.
Our results rely on a quick approximation of the sum
of the distances between P and any given point of P.
Our algorithms are simple, versatile, and easily imple-
mentable.

1 Introduction

In this paper, we consider the following problem:

Given a set P of n points in RY, locate a point in
P that minimizes the sum of the Euclidean distances
between P and the located point.

The optimal point for the problem is commonly re-
ferred to as the medoid. One would encounter the prob-
lem of computing the medoid in various contexts such
as clustering in data science [19, 21, 25|, optimizing fa-
cility location in operations research [10, 11, 15, 22], and
quantifying centrality in network analysis [6, 7, 16, 17,
26].

Naively, one can find the medoid of P by simply com-
puting all (}) pairwise distances. However, it has been
argued that an exact algorithm does not exist for solv-
ing the medoid problem in o(n?) time [23]. Different
approaches have thus been developed to compute the
medoid in sub-quadratic time either approximately or
exactly under statistical assumptions.

Eppstein and Wang [13] proposed a randomized
method that takes O(ne~2logn) distance computations
to approximate the medoid within an additive error of
D with high probability, where D is the diameter of
P, which may not be known apriori. This result was
later improved by Okamoto et al. [24], whose algorithm
requires O(n/3log*/® n) distance evaluations to return
the exact medoid with high probability under certain
statistical assumptions on P. Later on, Newling and
Fleuret [23] presented an algorithm for finding the true
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medoid using O(n?/229(4)) distance computations un-
der certain assumptions on the distribution of the given
points near the medoid. Soon after, a sampling-based
algorithm was given by Bagaria et al. [4] for computing
the exact medoid with high probability, and their al-
gorithm takes a total of O(nlogn) distance evaluations
under a distributional assumption on the input points.
By exploiting the underlying structure of the problem,
Baharav and Tse [5] derived an improvement to Bagaria
et al.’s algorithm, obtaining a gain of two to three orders
of magnitude in number of distance computations.

Note that all the algorithms aforementioned have
been derived in the context of network analysis, where
n is the number of nodes in an undirected graph, and
the distance metric is the length of the shortest path
between nodes. Nonetheless, the algorithms can be ef-
fectively applied to any point set under the Euclidean
metric, in which case the time complexity of each said
algorithm would be equal to its associated number of
distance computations multiplied by a factor of d.

In addition, there are randomized algorithms based
on coreset techniques [14, 27] capable of addressing the
problem considered herein. Specifically, one can com-
pute an e-coreset of a point set P in R?, which is a
small weighted subset of P, such that for any point
q € RY the distance sum > pep P — ql| can be ap-
proximated up to a factor of (1 + ¢) by using the dis-
tances between g and the weighted points in the core-
set. A coreset of size O(de=2) and O(poly(1/¢€)) can
be constructed in time O(dn + log®>n + delogn) and
O(nnz(A) + (n + d)poly(1/e) + exp(poly(1/¢))), respec-
tively, where nnz(A) is the number of non-zero entries
in the n x d matrix A of the coordinates of P. As a re-
sult, one can find a (1+¢)-approximation to the medoid
with high probability in O(n - poly(1/¢)) time.

For a set P of n points in R?, Har-Peled et al. [20] ob-
tained an exact algorithm that computes the medoid in
O(nlog®n - (lognloglogn + cp)) expected time, where
cp is the size of the largest subset of P in convex po-
sition. When the points of P are located uniformly at
random on the unit square, ¢p is bounded by ©(n'/?) in
expectation [2], and thus the medoid can be computed
in O(n*/31og®n) expected time.

2  Our results

Given an ¢ > 0, a point z is said to be a (1 + ¢)-
approximate solution if the sum of the distances from x
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to P is at most (1 4 €) times the sum of the distances
from the true medoid. Throughout the paper, we as-
sume that d and ¢ are fixed constants independent of
n; nevertheless, we include them in some of the asymp-
totic results to indicate their dependencies. In addition,
we assume, without loss of generality, that P has been
scaled so that it is enclosed within a unit hypercube.

We begin in Section 3 by describing an algorithm
to compute a (1 + &)-approximate medoid in time
O(ne~%logn). This algorithm uses a new data structure
named well separated subset decomposition (WSSD),
which extends on the classical idea of the well separated
pair decomposition (WSPD) by Callahan [9]. WSSD
partitions P into O(logn) clusters that preserve the dis-
tances of P to each of the n candidate points.

In Section 4, we encode the pairwise distances be-
tween the points of P by directly using WSPD. We can
then estimate the medoid within a factor of (1 + ¢) in
time O(ne~¢ + nlogn), provided that the pairwise dis-
tances associated with the well separated pairs are com-
puted and summed in the right order. If e=¢ = O(log n),
our algorithm would run in O(nlogn) time.

To the best of our knowledge, all the previous ap-
proximation methods for solving the medoid problem
are randomized, making our algorithms the first deter-
ministic fully polynomial-time approximation schemes
(FPTASs) with a time complexity near-linear in n.

3 O(ne~?logn)-time (1 + €)-approximation

We propose an O(ne~%logn)-time approximation algo-
rithm involving the following partitioning scheme.

Well separated subset decomposition (WSSD)

Let C denote a subset of P. Define s > 0 to be a
parameter called separation factor. With respect to a
candidate point p € P, for some r € R>g, if the points
of C can be enclosed within a Euclidean ball of radius
r such that the closest distance from this ball to p is at
least sr, then C' is said to be s-well separated from p.

Definition 1 (WSSD) Given a set P of n points, a
point p, and a separation factor s > 0, an s-well sep-
arated subset decomposition (s-WSSD) with respect to
p is defined as a collection of subsets of P, denoted by
{C1,C4,...,C}, such that (I) C; C P for1 <i <k,
(I) C;NC; =0 forl1 < 4,5 <k and i # j, (1)
UF_,Ci = P, and (IV) C; is s-well separated from p for
1<i<k.

An s-WSSD can be constructed from either a kd-tree
[8] or a balanced box decomposition (BBD) tree [3].
Both of these data structures are based on a hierarchical
subdivision of space into rectilinear regions called cells.
The size of a cell is given by the length of its longest

side. For a set P of n points in R?, it is possible to
build, in time O(nlogn), an optimized kd-tree [18] or a
BBD-tree with height O(logn) and space O(n). In ei-
ther tree, each internal node has two children, and each
leaf node contains a single point. Unlike a kd-tree, the
cells of a BBD-tree have a bounded aspect ratio, and
the sizes of the cells decrease by (at least) a factor of
1/2 with each descent of 2d levels in the tree.

Theorem 1 For a set P of n points and any s > 0,
with respect to a point p, one can construct an s-WSSD
of size O(s%logn) in time O(nlogn + s?logn).

Proof. We begin by building a kd-tree or a BBD-tree
for P. Each leaf node, which contains a single point, is
treated as having an infinitesimally small cell containing
its point.

The construction of an s-WSSD, with respect to a
point p, is based on a recursive process. Throughout the
construction, we maintain a collection of sets that sat-
isfy properties (I), (II), and (III) as stated in Definition
1. When the procedure terminates, all the sets gener-
ated will fulfill property (IV). Each set of the s-WSSD
will be encoded as a node in the kd-tree or BBD-tree.

Let v denote a node in either tree. Consider the small-
est Euclidean ball that encloses the cell of node u. If
the ball is s-well separated from point p, then we report
node u as an s-well separated subset. Otherwise, we
apply the procedure recursively to each child node of .
Let WSSD(u,p, s) denote said procedure.

Note that we can determine whether a node u (i.e.,
its smallest enclosing Euclidean ball) is s-well separated
from point p in O(1) time. This requires computing
the smallest Euclidean ball enclosing the cell of node u,
either at the time of determining the separation between
node u and point p or in advance (when creating the tree
data structure).

In the procedure WSSD(), we divide a node u only
if the call WSSD(u, p, s) is non-terminal — that is, node
u is not an s-well separated subset. Each non-terminal
call generates at most two recursive calls, through which
a terminal call may arise. Note that each terminal call
produces at most one well separated subset. Thus, the
total number of well separated subsets is at most two
times the number of non-terminal calls.

To evaluate the number of s-well separated subsets
generated in the recursive process, we use a packing
argument (to count the number of non-terminal calls),
which slightly differs depending on either an optimized
kd-tree or a BBD-tree is used as the basis for the con-
struction of the s-WSSD.

kd-tree-based s-WSSD. Each of the nodes at a
given level in an optimized kd-tree is associated with
(nearly) the same number of points (which is a result
of choosing the median as the cutting value). Consider
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the nodes at a given level A of the kd-tree, where the
cell associated with each node contains by points. Let
V' denote the volume of the cell associated with any
node at level A in the kd-tree. As shown by Friedman
et al. [18], the expected volume of each such cell is
approximately E[V] = an?1 . P%, where P, is the proba-
bility density averaged over the cell (assuming that the
probability distribution of the points within the cell is
approximately constant). Let a be the size of the cell.
Then, the expected size E[a] of the cell is simply the
d-th root of the expected volume of the cell — that is,
E[a] = E[V]Y/?. The expected number of nodes at level
A being divided in the procedure must be bounded from
above by the expected number of cells at level A over-
lapping the ball of radius sr centered at p — that is,
(1+ [2sr/E[a]])?. Given that r = E[a]V/d/2, the up-
per bound becomes (1 + sv/d)? = O(s?). Since there
are O(logn) levels in the kd-tree, the expected num-
ber of non-terminal calls to the procedure WSSD() is
O(s%logn). Hence, the expected number of s-well sep-
arated subsets is 2 - O(s%logn) = O(s%logn).

BBD-tree-based s-WSSD. For the case of a BBD-
tree, we use a similar packing argument as that for a
kd-tree. Recall that point set P has been scaled so that
it is enclosed within a unit hypercube. As a result, the
cells of the BBD-tree have sizes that are powers of 1/2.

For analysis purposes, we congregate the nodes in
the BBD-tree into groups according to the sizes of their
associated cells. Define size group ¢ to be the set of
nodes whose cell size is 1/2°. Note that a node and
its child may have the same size, and thus we cannot
apply the packing argument directly to each size group.
Define base group ¢ to be the subset of nodes in size
group ¢ that are leaf nodes or whose children belong to
the next smaller size group. The cells corresponding to
the nodes in a base group are pairwise interior-disjoint.
For each base group i, the number of cells overlapping
the ball of radius sr centered at p is bounded from
above by (14 [2sr/ (1/2iﬂ)d. Since r = (1/2%) Vd/2,
the upper bound becomes O(s?). Note that at most
2d levels of ancestors above the nodes in the base
group can be in the same size group. In addition, the
BBD-tree is O(logn) in height, which implies that the
total number of base groups is bounded by O(logn).
So, the total number of non-terminal calls to WSSD()
is O(2d - s?logn) = O(s?logn). As a result, the total
number of s-well separated subsets generated with
respect to point p is 2 - O(s%logn) = O(s%logn).

In both cases above, the asymptotic upper bound
on the number of s-well separated subsets generated is
O(s%logn), with the distinction that the upper bound
applies to the worst case for the BBD-tree, whereas the
upper bound is derived with respect to the average (ex-

pected) case for the kd-tree. Together with O(nlogn)
time to build either tree, the overall running time is
O(nlogn + s?logn). O

We now describe a technical lemma associated with
an s-WSSD, which will be used later in approximating
the medoid.

Lemma 2 (WSSD Utility Lemma) If subset C is s-
well separated from point p, and c,c’ € C, then we have
I =pl < (1+2) llc —p|-

Proof. Due to the triangle inequality, we have ||¢’ —
pll < |le = p|l + |l — ¢||. Since C is enclosed within a
ball of radius r and is s-well separated from p, we have
" = pll < lle = pll +2r = |le = pl| + ZEsr < |le = pl| +
Hle=pll = (1 +2) lle = pll. O

WSSD-based approximation

This section discusses the usage of a WSSD for approx-
imating the medoid of P. We present the arguments
only for the WSSD constructed from a BBD-tree, since
the analysis is similar for the case of using a kd-tree,
aside from that the resulting time complexity would be
of the average case instead of the worst case.

Theorem 3 Given a set P of n points in R?, for any
e >0, a (1 + e)-approximation to the medoid of P can
be computed in time O(ne~%logn).

Proof. First, we build a BBD-tree for P, using which
we construct an s-WSSD with respect to each of the
n candidate points in P. According to Theorem 1,
the total construction time is bounded by O(nlogn +
ns?logn) = O(ns?logn). We make a small augmenta-
tion to the construction of the WSSD as follows. When
building a BBD-tree, we associate each node u of the
tree with a quantity |u| indicating the number of points
lying within its cell. When we output a node u as an
s-well separated subset with respect to a point p in the
decomposition process, we report |u| and the farthest
point within the cell of node u from p (which may not
necessarily be a point of P). Since the farthest point
within a hypercube from p is one of the 2¢ vertices of
the hypercube, we can find the farthest point in O(2)
time, which is just O(1) given that d is treated as a
constant. Thus, the overall running time for the con-
struction of the WSSD remains the same as before.

Let {C; | 1 < i < kp} be the collection of s-well
separated subsets with respect to a point p. Let ¢(C;)
denote the farthest point within the cell containing C;
from point p, and let |C;| be the number of points in
C;. With respect to each candidate point p € P, we
compute the distance sum >, |C;| - [|¢(C;) — p||, and
output the point p achieving the smallest distance sum.
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Suppose that the aforementioned approach yields
point = as an approximate medoid for P. Let {A; |
1 < i < ky} be the set of s-well separated subsets
with respect to x. Then, by Lemma 2, for each s-
well separated subset A;, we have |4;] - ||¢(4;) — z|| <
Yuca, (14 2) la—z]|. Since ¢(A;) is the farthest point
within the cell containing A; from z, by summing over
all i, we obtain

S -l < 3 1Alo(4) -l < (1+2) T fp-al

pEP ) peP

Let m denote the exact medoid of P. Let {B; : 1 <
i < kn,} be the set of s-well separated subsets with
respect to m. We then have

Yollp—ml <Y e -zl <A 6(4) — 2

peP peEP 7

< 2_IBil - o(Bi) = ml|
<(1+2) -l

peEP

Given any € > 0, we set s = 2/e. Then, we obtain

Dlp=ml<d llp—zl<+e)) llp—m|

peEP pEP pEP

This implies that the output point z is a (1 +
g)-approximation to the medoid of P. The over-
all running time is bounded by O(n(2/e)logn) =
O(ne~logn). O

4 O(ne~ <+ nlogn)-time (1 + €)-approximation

In this section, we derive an algorithm for computing a
(1 + €)-approximation to the medoid of P in O(ne=% +
nlogn) time. First, we use a WSPD to represent the
distances between the points of P. After obtaining such
a representation, we carefully enumerate the pairwise
distances in an order such that the sum of the distances
from P to each representative point is approximated
correctly.

Well separated pair decomposition (WSPD)

A WSPD [9] is formally defined as follows. Let A and
B be subsets of P. Define s > 0 to be a separation
factor. Denote by r the smallest radius of a Euclidean
ball such that each of A and B can be enclosed within
such a ball. Set A is said to be s-well separated from B
if the closest distance between the two balls enclosing A
and B is at least sr.

Definition 2 (WSPD) For a set P of n points and a
separation factor s > 0, an s-well separated pair decom-
position (s-WSPD) is a collection of pairs of subsets of

P, denoted as {{A1, B1},{A2, B}, ..., {Ak, Br}}, such
that (I) A;,B; C P for1<i<k, (Il) A;,NB; =0 for
1<i<k, (II) . A,QB;, = PQP, and (IV) A;
and B; are s-well separated for 1 <i < k.

When estimating the medoid of P, we will make use
of the following utility property of an s-WSPD.

Lemma 4 (WSPD Utility Lemma) If pair {A, B}
18 s-well separated, a,a’ € A, and b € B, then we have
I — bl < (1+2) la - b].

Proof. The proof is similar to that of Lemma 2 and
thus omitted. O

WSPD-based approximation

Theorem 5 Given a set P of n points in R?, for any
e > 0, one can compute a (1 + €)-approzimation to the
medoid of P in O(ne~% 4+ nlogn) time.

Proof. We begin by building a compressed octree for
P. The octree can be built in O(nlogn) time, and is
of size O(n) [1, 12]. For simplicity of arguments, we
assume that the octree is not compressed but of size
O(n). This allows us to assume that nodes of the same
level in the octree have the same cell size. By using
the octree, we construct a WSPD for P such that each
well separated pair of nodes generated are of the same
level in the octree. This requires a slight modification to
the original algorithm given in [9] for creating a WSPD.
Namely, when we fail to separate a pair of nodes v and
v, we proceed to recursively separate the 2¢ children of u
from those of v, thus keeping the invariant that each pair
of nodes considered are of the same size. The algorithm
is presented as a pseudocode in Figure 1 (where the
code in blue is an augmentation necessary for finding
an approximate medoid, which will be discussed later).
The initial call is WSPD(ug,uo, s,0), where ug is the
root of the octree.

To evaluate the total number of well separated pairs
in the resulting WSPD, it suffices to count the number
of terminal calls to WSPD(), each of which can generate
O(224) well separated pairs. Since a terminal call may
only arise as a call to WSPD() in a non-terminal call, we
instead bound the number of calls to WSPD() made by
all the non-terminal calls. We claim that, in any non-
terminal call, for every node u; (iterated in the first
outer for loops of the algorithm), the number of calls
to WSPD() (as in the final for loop in the algorithm)
is bounded by O(s?). Since there are O(n) nodes in
the (compressed) octree, the total number of calls to
WSPD() is O(s%n).

We are now left to establish the claim that for any
node u;, the number of calls to WSPD() is bounded by
O(s%). For a node u;, a call to WSPD() is made only
if u; is not s-well separated from some node v;. Let o
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Algorithm WSPD(u,wv, s, par)

1. let uq, ..., uq be the children of wu;

2. let vy,...,vg be the children of v;

3. fori+1toa

4. do S « T « 0;

5. newpar <— par;

6. for j<1top

7. do if (u; or v; is empty) then ignore (u;,v;);

8. else if (u; and v; are leaves and u; = v;) then ignore (u;,v;);
9. else if (u; and v; are s-well separated)
10. then add (u;,v;) to S;

11. else add (u;,v;) to T;

12. if (S # () then newpar < u;;

13. for each (z,y) € S do output (z,y, par);

14. for each (z,y) € T do call WSPD(x, y, s, newpar);

Figure 1: Augmented algorithm for constructing WSPD.

denote the side length of the cells of nodes u; and v;.
Let r be the radius of the Euclidean ball enclosing each
of the cells of nodes u; and v;. Note that r = a\/d/2.
Assume that s > 1; if 0 < s < 1, we replace s with
max(s,1). Let c,, and c,; be the centers of the balls
enclosing the cells of nodes u; and v;, respectively. Since
u; is not s-well separated from v;, the distance between
cy; and ¢,; must be at most 2r +sr < 3sr. Let [ denote
the ball of radius 3sr centered at c,,. The set of nodes v;
that are not s-well separated from w; must correspond
to the cells of side length a overlapping 5. Using a
similar packing argument as in the proof of Theorem 1,
for a node u;, the number of such nodes v; is bounded
by O(s%).

Finally, together with O(nlogn) time to build the
octree, the overall time for constructing the WSPD is
O(nlogn + s%n).

For the convenience of the ensuing discussion, each
well separated pair (u,v) is represented (and produced
by the algorithm WSPD()) as an ordered pair, where u
is referred to as the anchor set of the pair.

Augmenting WSPD construction. In the octree
used for constructing the WSPD, we associate each node
u with 1) a representative point rep(u), which may be
chosen arbitrarily among the points lying inside the cell
of node u, and ii) a quantity |u| indicating the number
of points located within the cell of node u. In addition,
we output each well separated pair (u,v) along with a
set w, if any, where w is the lowest ancestor of u such
that w is s-well separated from some node of the same
level as w (in the octree). We call w the parent set of
(u,v) (and of u), and uw a child set of w. In the pseu-
docode WSPD(), variables par and newpar (i.e., code
in blue) are used for keeping track of the parent set for
each well separated pair.

Finding an approximate medoid. Let I" denote the
set of well separated pairs in an s-WSPD for P. Each
ordered pair of points (p;,q;) € P x P (where p; # ¢;)
occurs in a unique well separated pair (4, B) in I'. As
a result, we could simply compute the approximate dis-
tance sum for each point p; € P using I', and return the
point with the minimum distance sum as the approxi-
mate solution.

To take a closer look at this idea, let e; denote any
anchor set (of any well separated pair in I') that has
no child anchor set. Recall that rep(e;) denotes the
representative point associated with e;. Note that a
point p; € P must belong to a (unique) childless anchor
set e;, for which p; may or may not be chosen as the
representatives point.

Suppose that p; = rep(e;). Let S; C T be the
subset of well separated pairs, of which e; is either
the anchor set or a child anchor set. We can obtain
an approximate distance sum for point rep(e;) using
S;. Namely, for each pair (A, B) € S;, we compute
|B| - ||rep(B) — rep(e;)||. We then take the sum over all
the pairs in .S; to be the approximate distance sum for
pi. If p; # rep(e;), then the approximate distance sum
for p; only differs by at most a factor of (1 + %) from
that for rep(e;), according to Lemma 4.

Hence, we only need to compute the distance sum
for each representative point associated with a childless
anchor set (which will just be referred to as representa-
tive points for simplicity hereafter). However, observe
that, for any two childless anchor sets e; and e;, S;N.S;
may not be empty. That is, there could be some well
separated pair (A, B) € S; N S; such that e, C A and
ej C A. In other words, e; and e; could have some com-
mon ancestor anchor set. This implies, by computing
the distance sum for each representative point one at a
time, that the running time required to find the repre-
sentative point with the minimum distance sum could
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Algorithm Approz-Medoid(T)

1. F<«0;

2. for each C; € C (in increasing order)

3. do for each P;; € P;

4. do let w be the parent set of the well separated pairs in P;j;

5. for each Ay, € Ayj

6. do let u be the anchor set of the well separated pairs in A;jx;
7. compute ofu] += 32, ,)en,,, ([V] - [rep(v) —rep(u)]]);
8. if (w = 0) then add (rep(u),o[u]) to F;

9. if (w #0)

10. then let A = {u | (u,v) € Pi; };

11. Umin — argmin,e 4 oful;

12. olw] < o[tmin];

13. rep(w) < rep(Umin);

14. output (x,0) € F with the minimum o;

Figure 2: Algorithm for approximating medoid using WSPD.

be Q(s%n).

As it turns out, we do not have to compute the dis-
tance sums for all the representative points. If we com-
pute and sum the distances for each representative point
at each level in a bottom-up fashion, allow the represen-
tative point with the minimum “partial” distance sum
thus far at each level to overtake the others with the
same parent anchor set, then we could find the represen-
tative point with the minimum distance sum in O(s%n)
time (since each well separated pair is only used once
for distance sum computation).

Here are the details of the procedure. We group the
well separated pairs in I' according to the cell sizes of
their corresponding node pairs in the octree. Within
each cell-size group, we collect the well separated pairs
into groups with common parent sets. Within each such
parent-set group, we further congregate the well sepa-
rated pairs according to their anchor sets. Formally, for
a given well separated pair (u,v), we denote by cel(u,v)
and par(u,v) the cell size and the parent set of (u,v),
respectively. Note that if a well separated pair (u,v)
has no parent set, then par(u,v) = 0. Define:

i) C = {C; C T | VY(u,v),(z,y) € T, cel(u,v) =
cel(z,y) = (u,v) € G A (z,y) € G},

ii) Py = {Pi; C G | Y(u,v), (z,y) € C;, par(u,v) =
par(z,y) = (u,v) € Pi; A (z,y) € Py}, and

iii) Agj = {Aijr € Pij | V(u,v), (z,y) € Py, u=0 =
(u,v) € Agj A (2, y) € Agjr}-

That is, C = {C; | ¢ = 1,2,...} is the partition of
set I' according to cell size, P; = {P;; | j = 1,2,...}
is the partition of set C; € C according to parent set,
and A;; = {Ajr | K = 1,2,...} is the partition of set
P;; € P; according to anchor set. Assume, without loss
of generality, that for any C;,C; € C, if ¢ < j, then

cel(u,v) < cel(z,y) for all (u,v) € C; and (z,y) € C;.
For any anchor set u, let ofu] denote the distance sum
computed for w. Initially, we set ofu] = 0 for all anchor
sets u. We then process I' as described in the pseu-
docode given in Figure 2.

Briefly, we iterate the well separated pairs by cell size

in ascending order. Within each cell-size group C; € C,
we update o[u] for each anchor set u sharing the same
parent set w by considering its associated well separated
pairs (line 6 of the pseudocode). If w # @), then we find,
among those having the same parent set w, the anchor
set Umin with the minimum distance sum after the up-
date. We record the distance sum for uy;, as that for
its parent set w, and replace the representative point for
the parent set w of Uy, with that for uy;,. When the
algorithm terminates, of all anchor sets without a par-
ent set, we report the one with the minimum distance
sum.
The time complexity of Approx-Medoid() is bounded
by O(s%n), given that each well separated pair is pro-
cessed by a constant number of operations in the pro-
cedure. Along with the construction time for WSPD,
the overall time for approximating the medoid of P is
O(nlogn + sin).

Correctness of algorithm. We now proceed to prove
the correctness of the algorithm Approz-Medoid() to
yield a solution within a multiplicative error of €.

Let m be the exact medoid of P. Let x be the rep-
resentative point returned as the approximate solution
by the algorithm Approz-Medoid(). To establish the
correctness of the algorithm, we have to show that

Slp-ml <3S p—zl <1+ lIp—mi
peP peP peP

The first inequality holds because no other point in P
can have a smaller distance sum than the exact medoid
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m. To prove the second inequality, consider the anchor
set Usuchthati)me U Az eUandii)m¢ U Az ¢
U’ for all child sets U’ of U.

First, we examine the set of distance computations
for the levels above that of U. Let A = {(U/,V;) |
i =1,2,...} denote the set of all well separated pairs
such that for each pair (U/,V;) € A, U/ is an ancestor
set of U. For each well separated pair (U/,V;) € A,
according to Lemma 4, we have |V;] - ||rep(V;) — z|| <
(1+ 2) |Vi]- [rep(V;) —m)|. If we sum over all the pairs
in A, we then have

SOl lrep(vi) ~al < (142 ) S Wl ren(vi) -

Secondly, we examine the distance computations for
the levels below that of U. For any anchor set C, let
o|C, c] denote the distance sum computed for C' in the
algorithm, where ¢ € C' is the representative point used
in computing the distance sum. Let M be the child set
of U such that m € M. Similarly, let X denote the child
set of U such that z € X. Recall that M N X = 0.

Let M’ be the lowest descendant set of M such that
m € M'. Let m’ be the representative point associated
with M’. If m’ = m, then the distance sum computed
for M' is o[M’',m'] = o[M',m]. Otherwise, according
to Lemma 4, we have o[M’,m'] < (1+ 2) o[M’,m].

Figure 3: Point m” = m* overtakes m’ in the distance
sum computation during the execution of the algorithm
Approx-Medoid() such that o[M,m*] < o[M,m/] <
(1+2) o[M,m).

Let m* € M be the representative point used (in
the algorithm) to compute the distance sum for an-
chor set M. Since z is the representative point pro-
duced by the algorithm as the solution, we must have
olX,z] < o[M,m*]. If m* = m/, then o[X,z] <
o[M,m*] = o[M,m'] < (1+ 2)o[M,m]. Otherwise,
at some level between that of M and M’, m' must
be “overtaken” by some other point m” such that i)
m'' is the representative of some anchor set M”, and
ii) o[M",m"] < o[M! ,m'], where M/ is an ances-

tor set of M’ and of the same level as M” (see Fig-
ure 3 for an illustration). Clearly, this sort of “over-
taking” could happen multiple times as we ascend the
levels from that of M’ to M in the algorithm. At
the end of the ascension, m* prevails, and we have
o[X,z] < o[M,m*] < o[M,m] < (1+ 2)o[M,m)].

As the algorithm terminates, (x,0) is yielded as the
approximate solution, where

o= Vil |lrep(V;) — x| + o[ X, 2]

is the minimum distance sum reported along with point
x. By applying Lemma 4, we have

> lp -zl

peP

<(1+3) (Z Vil Irep(Vi) — | + o[ X, x1>

<(1+2) (Z Vil - Irep(Ve) = ml] + o{M, m}>
<(1+2) S mi

peEP

6 12 8
=<1+s+82+83)2|p—m

peP

Since s = max(s, 1), we obtain

6 20
Sl < (1424 2) -

peEP peEP
Given an e > 0, if we set § = 3Hv2+20¢ VgHOE, then we have

Yollp—al <t+e)) lp—m|

peEP peEP

5 Conclusion

We have presented two deterministic, near-linear time
algorithms for approximating the medoid of a point set
in fixed dimensions within a factor of (1 + ¢). In the
future, we propose to further explore the idea of pair
decompositions for solving minsum location-based op-
timization problems involving more complex geometric
objects.
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