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The Median Line Segment Problem: Computational Complexity and
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Abstract

In the median line segment problem, we are given a set
P of n points in Rd and a real number ℓ > 0 with
the objective to find a line segment of length ℓ such
that the sum of the Euclidean distances from P to the
line segment is minimized. We prove that, in general,
it is impossible to construct a median line segment for
n ≥ 3 non-collinear points in the plane by using only
ruler and compass. We then consider two constrained
variants of the median line segment problem in R2 –
i) point-anchored and ii) constant-slope. In the point-
anchored variant, an endpoint of the median line seg-
ment is given as input, whereas in the constant-slope
variant, the orientation of the median line segment is
fixed. We present a deterministic (1+ε)-approximation
algorithm for solving each constrained variant. For ap-
proximating a point-anchored median line segment, we
give a space-subdivision method with a time complex-
ity of O(nε−2α−1

θ ), where αθ is a parameter dependent
on the coordinates of P . For approximating a constant-
slope median line segment, a prune-and-search approach
is used, and its time complexity is O(kn log n), where k
is inversely proportional to ε.

1 Introduction

The median line segment problem is formally defined
as follows.

Given a set P of n points in Rd and a positive real
number ℓ, locate a line segment of length ℓ such that the
sum of the Euclidean distances from P to the located
line segment is minimized.

The problem applies to any real-world scenario that in-
volves finding a best location for any object that could
be modeled as a line segment. The problem could arise
in many industries and sectors, where we wish to find
the optimal placement of various facilities to maximize
their efficiency, impact, and profit. These facilities may
include highways, railroads, pipelines, telecommunica-
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tion lines, electronic circuit connectors, and electrodes.
In addition to location science, the median line segment
problem could have potential applications in other sub-
ject areas with less obvious connections such as cluster
analysis in data science and pattern recognition in com-
puter vision.

The median line segment problem is closely related
to one of the oldest non-trivial problems in facility loca-
tion theory – the (generalized) Fermat-Torricelli prob-
lem, which asks to find a point with the minimal sum of
distances to a given set of n points. The optimal point
is referred to as the Fermat-Torricelli point or simply
the (geometric) median. For n ≥ 5 points in general
position, it has been proven that the Fermat-Torricelli
point cannot be constructed by strict usage of ruler and
compass [1, 7]. In other words, the Fermat-Torricelli
problem is unsolvable by radicals over the field of ratio-
nals. Consequently, no exact algorithm exists for solv-
ing the problem under computational models with basic
arithmetic operations and the extraction of k-th roots.
This leaves us with only numerical or symbolic approx-
imation methods for n ≥ 5 points (e.g., see [2, 3, 4]).
Furthermore, it remains unclear whether the problem is
in NP.

Another problem related to ours is the median line
problem, which asks to locate a line minimizing the sum
of the distances between a given set of n points and the
located line. When considering the median line problem
in two dimensions, the optimal line has been shown to
exhibit the following properties. The median line must
divide the given points into two equal halves, and must
pass through at least two of the given points [8]. As a
consequence, the median line problem could be solved
exactly in O(n2) time (by mainly exploiting the prop-
erty that the optimal line must contain a pair of given
points) [6]. The optimal solution could also be found
in O(h log n) time, where h is the number of halving
lines [11, 12]. Currently, the best upper bound for h is
O(n4/3). However, no exact algorithm is known to solve
the median line problem in higher dimensions.

Unlike the Fermat-Torricelli problem and the median
line problem, which have been extensively studied over
the years, the median line segment problem has not thus
far received any proper attention in the literature.
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2 Our results

We prove that it is impossible to construct a median
line segment for n ≥ 3 non-collinear points in R2 by
using only ruler and compass (Section 4). We then con-
sider the median line segment problem under different
geometric constraints. Particularly, we derive a (1+ ε)-
approximation algorithm for solving the point-anchored
median line segment problem in the plane (Section 5).
In this constrained problem, an endpoint of the median
line segment is given as part of the input. By essen-
tially dividing the space around the anchor point into
O(n) intervals with certain geometric properties, our al-
gorithm finds an approximate solution in O(nε−2α−1

θ )
time, where αθ is a parameter dependent on the coor-
dinates of P . Furthermore, we provide an algorithm
for computing a (1+ε)-approximate constant-slope me-
dian line segment in R2, where the slope of the median
line segment is fixed at input (Section 6). Our algo-
rithm is a tailored extension of the prune-and-search
approach given by Bose et al. [2], and its running time
is O(kn log n), where k = 2π

cos−1(1+ε)−2 .

3 Preliminaries

For any two points a and b in Rd, let ab denote the line
segment bounded by a and b, and let ∥ab∥= ∥b− a∥ be
the Euclidean distance between a and b.

For any line segment ab in Rd, let Ha (resp. Hb) be
the hyperplane containing a (resp. b) and orthogonal to
ab. Let Sa (resp. Sb) be the closed half-space bounded
by Ha (resp. Hb) and not containing ab. Define Sab =
Rd \ (Sa ∪ Sb).

For a line segment ab in R2, let Lab be the line con-
taining ab. Let H+ denote a closed half-plane bounded
by Lab, and let H− = R2 \H+. Define S+

a = Sa ∩H+,
S−
a = Sa ∩ H−, S+

b = Sb ∩ H+, S−
b = Sb ∩ H−,

S+
ab = Sab ∩H+, and S−

ab = Sab ∩H− (Figure 1).

Figure 1: Regions defined with respect to a line segment
ab.

We assume, without loss of generality, that the points
of P have been uniformly scaled such that the length of
the median line segment is ℓ = 1. Let D denote the
diameter of point set P . Note that if ℓ ≥ D, then our
problem effectively becomes the median line problem.
Thus, in this paper, we assume that ℓ < D, unless spec-
ified otherwise.

A line segment s is said to be a (1 + ε)-approximate
solution if the sum of the distances from P to s is at
most (1 + ε) times that of the optimal line segment.

4 Inconstructibility of the median line segment

Theorem 1 The construction of a median line segment
is, in general, impossible for n = 3 and more points in
the plane by strict usage of ruler and compass.

Proof. In order to prove the theorem, we require the
following lemma.

Lemma 2 Let p∗ denote the Fermat-Torricelli point for
a point set {p1, p2, p3}. Let β = argmaxi∥p∗pi∥. For
i ̸= β, let ηi be the distance from pβ to the foot of the
altitude from pi in triangle △p1p2p3.

A. If ℓ ≤ ∥p∗pβ∥, then there exists a median line seg-
ment s∗ = a∗b∗ such that its endpoint a∗ coincides
with p∗, and s∗ lies in p∗pβ (Figure 2A).

B. If ℓ > ∥p∗pβ∥, then there is a median line segment
s∗ = a∗b∗ such that its endpoint a∗ coincides with
pβ.

(1) l ≤ min{ηi : i ̸= β}. For i ̸= β, let ϕi be the
acute angle formed by b∗pi and the line sup-
porting s∗. Endpoint b∗ must be located such
that ϕi = ϕj, where i, j ̸= β and i ̸= j (Figure
2B).

(2) l > min{ηi : i ̸= β}. For i ̸= β, let qi be
the closest point on s∗ to pi, and let wi de-
note the distance from a∗ to qi. Note that
wi ∈ [0, 1]. Let d̄i denote the vector from qi
to pi, and let h̄i be the component of d̄i nor-
mal to s∗ multiplied by wi. For i, j ̸= β and
i ̸= j, endpoint b∗ must be located such that
∥h̄i∥/∥d̄i∥= ∥h̄j∥/∥d̄j∥.

Proof. We refer to the full paper for the proof. □

Part A of Lemma 2 essentially implies that if ℓ ≤
∥p∗pβ∥, then a median line segment s∗ can be con-
structed by using ruler and compass, since the exact
Euclidean construction of the Fermat-Torricelli point
for n = 3 points is possible. However, in part B of
Lemma 2 (ℓ > ∥p∗pβ∥) – case 1 in particular – in order
to construct a median line segment s∗, we have to look
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Figure 2: Illustrations for Lemma 2. (A) Part A. (B)
Case 1 of part B.

for a point b∗ on the circumference of a circle of radius ℓ
centered at a∗ = pβ such that the rays emanating from
pi and pj , where i ̸= j and i, j ̸= β, meeting at b∗ make
equal angles with the normal at b∗. This is known as
(and equivalent to) the Alhazen’s billiard problem, to
which the general solution has been proven to be incon-
structible using only ruler and compass [9]. Briefly, the
problem requires solving a quartic equation that is irre-
ducible over Q (and so does not have constructible solu-
tions). Hence, we conclude that the ruler-and-compass
construction of a median line segment is, in general, im-
possible for n = 3 (and more) points. □

5 Approximating the point-anchored median line
segment

In this section, we consider the following restricted
variant of the median line segment problem.

Given a set P of n points in R2, a point q ∈ R2, and a
real number ℓ > 0, find a line segment of length ℓ with
an endpoint at q such that the sum of the Euclidean
distances from P to the line segment is minimized.

Remark 1 It follows from the proof of Theorem 1 that
the point-anchored median line segment problem is, in
general, not solvable by radicals over Q for n ≥ 2 points.

Theorem 3 For the point-anchored median line seg-
ment problem in R2, given any ε > 0, one can compute a

(1+ε)-approximate solution in time O(nε−2α−1
θ ), where

αθ is a function dependent on the coordinates of P .

Proof. Let s denote any line segment of length ℓ with
an endpoint fixed at q. Assume, without loss of gen-
erality, that the fixed endpoint of line segment s is
a = q = (0, 0) (by a translation of P ), and the length
of line segment s is ℓ = 1 (through a uniform scaling of
P ). Let θ be the counterclockwise angle of line segment
s with respect to the positive x-axis rooted at a. The
sum of the distances from P = {p1, p2, ..., pn} to line
segment s is given by the following objective function:

f (θ) =
∑

1≤i≤n
pi∈Sa

√
xi

2 + yi2

+
∑

1≤i≤n

pi∈S+
ab

[xi (− sin θ) + yi cos θ]

+
∑

1≤i≤n

pi∈S−
ab

[−xi (− sin θ)− yi cos θ]

+
∑

1≤i≤n
pi∈Sb

√
(xi − cos θ)

2
+ (yi − sin θ)

2

where xi and yi are the x- and y-coordinates of pi ∈ P ,
respectively. We consider θ ∈ [0, π/2) only, and each
subsequent quadrant can be handled analogously. The
quadrant [0, π/2) can be divided into a set T of at most
Θ(n) contiguous intervals, in each of which the subsets
of points of P in Sa, S

+
ab, S

−
ab, S

+
b , and S−

b , respectively,
remain constant. We partition each interval of T into
a number of small sub-intervals such that the relative
error in computing the sum of the distances from P to
a line segment s, whose angle θ is given by a boundary
of a sub-interval, does not exceed ε.
To evaluate the number of sub-intervals, we perform

the following analysis. Let I denote a sub-interval. Sup-
pose that the optimal line segment s∗ lies within I.
First, we note that the distance from any given point
pi ∈ Sa to endpoint a of line segment s remains con-
stant within sub-interval I. For simplicity of notation,
the subscript i is dropped, and p is equivalent to pi
hereafter.

For a point p ∈ S+
ab, let dp = d(p, s) denote its or-

thogonal distance to a line segment s whose location is
defined by a boundary of interval I (Figure 3A). Sup-
pose that d∗p = d(p, s∗) is the distance from p to the op-
timal line segment s∗. We rotate the coordinate system
such that the positive x-axis contains s, and the first
quadrant of the defined xy-plane contains sub-interval
I (and thus s∗). Specifically, consider the worst-case
scenario where s and s∗ are located at the two ends of
sub-interval I. Let ∆θ be the size of sub-interval I. In
addition, let xp and yp denote the x- and y-coordinates,
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Figure 3: A point p ∈ P located in (A) S+
ab or (B) S+

b .

respectively, of point p. In order to have dp ≤ (1+ε)d∗p,
the following must hold:

dp ≤ (1 + ε) d∗p

yp ≤ (1 + ε) (−xp sin∆θ + yp cos∆θ)

1

1 + ε
≤ −xp

yp
sin∆θ + cos∆θ

=

√
1 +

(
xp

yp

)2

cos

(
∆θ + tan−1xp

yp

)

∆θ ≤ cos−1

 1

(1 + ε)

√
1 +

(
xp

yp

)2
− tan−1xp

yp

Let A+
ab,p denote the right-hand term of the last inequal-

ity above. Given that

A+
ab,p ≥ ε

cos−1

 1

2

√
1 +

(
xp

yp

)2
− tan−1xp

yp


= εα+

ab,p

for 0 < ε < 1, if we have ∆θ = εα+
ab,p, then the desired

condition dp ≤ (1 + ε)d∗p is fulfilled. Note that α+
ab,p is

a trigonometric function in terms of the coordinates of
point p. We can satisfy dp ≤ (1 + ε)d∗p for all points

p ∈ S+
ab if we set ∆θ = ε ·min{α+

ab,p : p ∈ Sab
+}.

The analysis for S−
ab is similar to that for S+

ab due to
symmetry, and we obtain {α−

ab,p : p ∈ S−
ab} accordingly.

We can also perform a similar analysis for each point
p ∈ S+

b . Let dp = d(p, s) denote the distance from p
to endpoint b of a line segment s located at a boundary
of sub-interval I (Figure 3B). Let d∗p = d(p, s∗) be the
shortest distance from p to the optimal line segment s∗.
As before, we define a coordinate system on s such that
the positive x-axis contains s, and the first quadrant of
the xy-plane contains sub-interval I, at whose bound-
aries s and s∗ are positioned. Let ∆θ be the size of
sub-interval I. If dp ≤ (1 + ε)d∗p, then we have

dp ≤ (1 + ε) d∗p√
(xp − 1)

2
+ yp2

≤ (1 + ε)

√
(xp − cos∆θ)

2
+ (yp − sin∆θ)

2

(xp − 1)
2
+ yp

2

(1 + ε)
2

≤ (xp − cos∆θ)
2
+ (yp − sin∆θ)

2

= xp
2 − 2xp cos∆θ + yp

2 − 2yp sin∆θ + 1

− 1

2

(
(xp − 1)

2
+ yp

2

(1 + ε)
2 − xp

2 − yp
2 − 1

)
≥ xp cos∆θ + yp sin∆θ

=
√
xp

2 + yp2 cos

(
∆θ + tan−1

(
−xp

yp

))
∆θ ≤ tan−1

(
xp

yp

)
− cos−1

(
− 1

2
√

xp
2 + yp2(

(xp − 1)
2
+ yp

2

(1 + ε)
2 − xp

2 − yp
2 − 1

))

Let A+
b,p denote the right-hand side of the last inequality

above. Since

A+
b,p ≥ ε2

[
tan−1

(
xp

yp

)
− cos−1

(
− 1

2
√

xp
2 + yp2(

(xp − 1)
2
+ yp

2

(1 + ε′)
2 − xp

2 − yp
2 − 1

))]
= ε2α+

b,p

where ε′ = min(1, εp),

εp =

√
(xp − 1)

2
+ yp2√(

xp − xp√
xp

2+yp
2

)2

+

(
yp − yp√

xp
2+yp

2

)2
− 1

and 0 < ε ≤ ε′ < 1, if we set ∆θ = ε2α+
b,p, then dp ≤

(1 + ε)d∗p is satisfied. Note that α+
b,p is a trigonometric

function dependent on the coordinates of point p. In
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order to uphold dp ≤ (1+ ε)d∗p for all points p ∈ S+
b , we

can simply set ∆θ = ε2 ·min{α+
b,p : p ∈ S+

b }.
Points p ∈ S−

b can be handled analogously as those
in S+

b , and we obtain {α−
b,p : p ∈ S−

b } as the result.
In summary, for each given interval τ ∈ T , we

compute α+
ab = min{α+

ab,p : p ∈ S+
ab}, α−

ab =

min{α−
ab,p : p ∈ S−

ab}, α+
b = min{α+

b,p : p ∈ S+
b },

and α−
b = min{α−

b,p : p ∈ S−
b }. We then use ∆θ =

min
{
εα+

ab, εα
−
ab, ε

2α+
b , ε

2α−
b

}
for partitioning the given

interval τ into sub-intervals of size at most ∆θ.
We now derive an upper bound on the number

of sub-intervals as follows. Let s(τ) denote the set
{α+

ab, α
−
ab, α

+
b , α

−
b } computed for each interval τ of T .

Define αθ = min{α ∈ s(τ) : τ ∈ T}. Then, we have
a total of 2π/(ε2αθ) sub-intervals in the worst case.
Since it takes O(n) algebraic operations to compute the
sum of distances for each candidate line segment (de-
fined by the boundaries of the sub-intervals), we can
obtain a solution, whose sum of distances to P is at
most (1 + ε) times that of the optimal solution, in
2πn/(ε2αθ) = O(nε−2α−1

θ ) time. □

6 Approximating the constant-slope median line
segment

In this section, we address a constrained variant of the
median line segment problem stated as follows.

Given a set P of n points in R2, an angle θ, and a real
number ℓ > 0, find a line segment of length ℓ making
angle θ with the abscissa axis such that the sum of the
Euclidean distances from P to the line segment is min-
imized.

Theorem 4 For the constant-slope median line seg-
ment problem in R2, given any ε > 0, one can find
a line segment, whose sum of distances to P is at most
(1 + ε) times that of the optimal line segment, in time
O(kn log n), where k = 2π

cos−1(1+ε)−2 .

Proof. We denote by s = ab any line segment of length
ℓ making angle θ with the positive x-axis. Assume,
without loss of generality, that θ = 0 and ℓ = 1. Let
xa and ya be the x- and y-coordinates of the endpoint
a of line segment s, respectively. Then, the sum of the
distances from P = {p1, p2, ..., pn} to line segment s can
be written as the following objective function:

f(s) = f (xa, ya)

=
∑

1≤i≤n
pi∈Sa

√
(xi − xa)

2
+ (yi − ya)

2

+
∑

1≤i≤n

pi∈S+
ab

(yi − ya) +
∑

1≤i≤n

pi∈S−
ab

(ya − yi)

+
∑

1≤i≤n
pi∈Sb

√
(xi − xa − 1)

2
+ (yi − ya)

2

where xi and yi are the x- and y-coordinates of pi ∈ P ,
respectively.

Remark 2 f is a piecewise convex function, where
each piece consists of a sum of two convex functions and
two linear functions, and the transition between any two
consecutive pieces corresponds to a point of P moving
between Sa, S

+
ab, S

−
ab, and Sb. Since the number of such

transitions is bounded by Θ(n2), the minimum of func-
tion f can be obtained by solving Θ(n2) two-variable
convex optimization problems.

We begin by defining the so-called k-oriented distance
function dk [5, 10] to approximate the Euclidean dis-
tance as follows.

k-oriented distance. A cone in R2 is defined as the
intersection of two half-planes, each of whose supporting
lines contains the origin O. A simplicial cone c has a
diameter bounded by an angle γ if, for any two points
p and q in c, we have ̸ pOq ≤ γ. Let C = {c1, ..., ck} be
a set of k cones, each of which has a diameter bounded
by γ, and C forms a partition of R2. Note that k is a
function of γ. Thus, C could be a set of cones defined by
the rays originating at O making angles {(i − 1)2π/k :
1 ≤ i ≤ k} with respect to the abscissa axis. The two
rays that bound a cone c are called the axes of c. For
a point p ∈ R2, let ti(p) denote p represented in the
coordinate system whose axes are those of ci. For a
point p in a cone ci, dk(O, p) = ∥ti(p)∥ is called the
k-oriented distance from O to p, and is defined as the
length of the shortest path from O to p traveling only
in the directions parallel to the axes of ci. For any two
points p and q in ci, we have dk(p, q) = dk(O, q − p).
Notice that, if γ = π/2, then the corresponding dk is
known as the rectilinear (Manhattan) distance function.
For any two points p, q ∈ R2, ∥pq∥≤ dk(p, q) ≤ (1 +
ε)∥pq∥, where ε is a positive constant that decreases as
k increases.

We now derive an explicit expression for k in terms
of ε. Assume, without loss of generality, that point p is
located at the origin O (i.e., p = O). Let ρ1 and ρ2 be
the two rays originating at O and defining the cone that
contains point q. Recall that the cone has a diameter
bounded by angle γ. Consider the case that γ is less
than π/2. Define m to be the line with the same slope
as ray ρ1 and passing through q. Let r be the inter-
section of m and ρ2. Note that dk(p, q) = ∥pr∥+∥rq∥.
Furthermore, according to the law of cosines, we have

∥pr∥2+∥rq∥2−2∥pr∥∥rq∥cos(π − γ) = ∥pq∥2

∥pr∥2+∥rq∥2+2∥pr∥∥rq∥cos γ = ∥pq∥2
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Given that 0 < γ < π/2,(
∥pr∥2+∥rq∥2+2∥pr∥∥rq∥

)
cos γ ≤ ∥pq∥2

(∥pr∥+∥rq∥)2 ≤ ∥pq∥2

cos γ

∥pr∥+∥rq∥ ≤ ∥pq∥
√
cos γ

Thus, we have dk(p, q) ≤ (1+ε)∥pq∥, where ε = 1√
cos γ −

1. Since γ = 2π/k, we obtain k = 2π
cos−1(1+ε)−2 for

0 < ε < 1.
Recall that the objective function f(s) denotes the

sum of the Euclidean distances from P to s. We can
approximate f(s) using

fk (s) =
∑

1≤i≤n
pi∈Sa

dk (pi, a) +
∑

1≤i≤n
pi∈Sb

dk (pi, b)

+
∑

1≤i≤n

pi∈S+
ab

yi − ya +
∑

1≤i≤n

pi∈S−
ab

ya − yi

Observe that function fk(s) is convex and piecewise lin-
ear. Hence, we can find the minimum of fk(s) using the
prune-and-search approach described by Bose et al. [2]
after some careful modifications.

Prune and search. Consider the set of cones C used
in evaluating dk. Recall that each cone c ∈ C is defined
by two lines. Let L be the set of lines defining C. For
each point p ∈ P , we create a point at a distance ℓ to
the right of p. Let P ′ denote the newly created set of
points. For each point p ∈ P ∪ P ′, we construct a copy
of L such that each of the lines in L passes through
p. The result is an arrangement of lines A. Observe
that each cell of A corresponds to a linear piece of the
surface fk. Consequently, fk reaches a minimum when
the endpoint a of line segment s coincides with a vertex
of A.

We now describe a prune-and-search algorithm to find
the lowest point on the surface fk. Note that A consists
of k sets of parallel lines. Let Hi denote a given set
of parallel lines in A, where 1 ≤ i ≤ k. We begin by
finding a median line h ∈ Hi that divides Hi into two
nearly equal sets. Line h partitions R2 into two half-
planes, h1 and h2, one of which contains a minimum of
fk. Suppose, without loss of generality, that h1 contains
the minimum. Then, we can simply ignore all the lines
in h2, and continue to recurse on h1. This recursive
process takes O(log n) rounds for each set Hi.
In each aforesaid round, we first find a point ph on h

that minimizes fk. We can then, based on ph, determine
if the minimum lies in h1 or h2.

The problem of finding ph is a one-dimensional in-
stance of our problem (i.e., constrained to line h). Since
fk is piecewise linear, ph lies on an intersection of h with
some other line in H = {H1, ...,Hk} \ h. Hence, we i)
compute all the intersections of h with H, ii) find the
median intersection point qm and the two intersection
points q1 and q2 that are adjacent to qm on h, and iii)
determine if ph lies to the left of qm, right of qm, or is
qm by evaluating fk(qm), fk(q1), and fk(q2).

Let u be the size ofH. The time complexity of finding
ph is given by the recurrence relation T (u) = T (u/2) +
O(u + Q(n)), where Q(n) denotes the query time to
evaluate fk. This recurrence solves to O(u+Q(n) log u).

After finding ph, we determine whether the mini-
mum lies in h1 or h2 as follows. Consider two oppo-
site rays r1 and r2, which are i) originating at ph, ii)
orthogonal to h, and iii) contained in h1 and h2, re-
spectively. We identify the first lines hr1 and hr2 inter-
sected by r1 and r2, respectively. Let v1 (resp. v2) be
the intersection point of hr1 and r1 (resp. hr2 and r2).
There are three possible cases to be considered: (1) If
fk(v1) ≤ fk(ph) ≤ fk(v2), then a minimum of fk lies in
h1. (2) If fk(v1) ≥ fk(ph) ≥ fk(v2), then a minimum of
fk lies in h2. (3) If fk(v1) > fk(ph) and fk(v2) > fk(ph),
then ph is a minimum of fk. Verifying these cases re-
quire the computation of all the intersections of H with
r1 and r2, and the evaluation of fk at v1 and v2. So,
the time complexity of determining whether a minimum
lies in h1 or h2 is O(u+Q(n)).

Observe that u = O(kn). Thus, the time taken by the
recursive procedure for each setHi is given by the recur-
rence relation T (n) = T (kn/2) + O(kn + Q(n) log kn),
which solves to O(kn + Q(n) log kn). Given that we
have k sets Hi, the overall time taken by the prune-and-
search algorithm to compute the point that minimizes
fk is O(P (n) + k(kn+Q(n) log kn)), where P (n) is the
preprocessing time to construct the data structure for
evaluating fk, and Q(n) is the query time to evaluate
fk.

We claim that a data structure with a preprocess-
ing time P (n) = O(kn log n) exists for evaluating fk in
query time Q(n) = O(k log n) (refer to the full paper
for details). As a result, the overall running time of our
algorithm is O(kn log n). □

Remark 3 Alternatively, the space-subdivision proce-
dure previously used in approximating a point-anchored
median line segment could be extended to address
the constant-slope variant. The resulting (1 + ε)-
approximation algorithm would have a time complexity
of O(n2 +nε−4αxy), where αxy is a function dependent
on the coordinates of P .
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7 Conclusion

We have proven that a median line segment is not con-
structible for n ≥ 3 non-collinear points in the plane
by using only ruler and compass. We have presented
a (1 + ε)-approximation algorithm for solving the con-
strained median line segment problem in R2 where an
endpoint or the slope of the median line segment is given
at input. These algorithms are space-subdivision and
prune-and-search approaches, and their time complex-
ities are near-linear in n. At last, we leave open the
question of whether our approximation algorithms for
solving the constrained variants can be extended to ob-
tain a (1+ε)-approximate solution to the unconstrained
median line segment problem.
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