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Weighted shortest path in equilateral triangular meshes∗
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Abstract

Let T be a tessellation composed of equilateral tri-
angular regions, in which each region has an asso-
ciated positive weight. We present two approxima-
tion algorithms for solving the Weighted Region Prob-
lem. Our algorithms are based on the method of
discretizing the space by placing points on the cells
of the tessellation and using Dijkstra’s algorithm for
computing the weighted shortest path in the geomet-
ric graph obtained by such a discretization. For a
given parameter ε ∈ [0, 1], the weight of our paths areÅ
1 + 14(4
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6ε−8)−16(7+ε)

(−4
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6ε+8+
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6ε+8)(7−ε)

ã
≤ 1 + 0.39ε, and

1 + ε (using fewer points) times the cost of the actual
shortest path.

1 Introduction

In this paper, we study optimal obstacle-avoiding paths
from a starting point s to an ending point t in the 2-
dimensional plane. Shortest path problems are among
the most studied problems in computational geometry.
These problems have applications in several areas such
as robotics [16], video-games [11, 17], and geographical
information systems (GIS) [7], among others.

Mitchell and Papadimitriou [13, 12] examined a gen-
eralization of the shortest path problem, called the
Weighted Region Problem (WRP). They allowed the
two-dimensional space to be subdivided into regions,
each of which has a (non-negative) weight associated to
it, representing the cost per unit distance of traveling
in that region. They provided an approximating algo-
rithm which computes a (1 + ε)-approximation path in
O(n8 log nNW

wε ) time, where N is the maximum integer
coordinate of any vertex of the subdivision, W (respec-
tively, w) is the maximum finite (respectively, minimum
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non-zero) integer weight assigned to faces of the subdi-
vision.

Motivated by this result, several authors proposed al-
gorithms for computing approximated paths, reducing
the running time and producing geometric problem in-
stances with fewer “bad” configurations (e.g., the De-
launay triangulation is used to maximize the minimum
angle).

The most common scheme followed in the literature
is to position Steiner points, and then build a graph
by connecting pairs of Steiner points. An approximate
solution is constructed by finding a shortest path in this
graph, by using well-known combinatorial algorithms
(e.g., Dijkstra’s algorithm).

Aleksandrov et al. [3, 4] proposed placing Steiner
points on edges of an appropriate mesh, and then, in-
terconnecting the Steiner points within each face. Since
an infinite number of Steiner points would be required
for the approximation, they constructed a star shaped
polygon around each vertex of the mesh; ensuring that
Steiner points are placed outside these regions. They
also deal with the problem of large sized graphs. By de-
riving geometric properties of Snell’s law of refraction
for a discrete domain, they reduced the search space.
They employed a pruned Dijskstra’s algorithm where
the execution is restricted to a sparse set of potential
edges, given that the preceding edge on a path is known.
Employing all these steps together and using geometric
spanners they obtained a (1 + ε)-approximation path.
Reif and Sun [18] used the same discretization ap-

proach as in [4]. They employed an algorithm called
BUSHWHACK to compute an optimal path in the dis-
crete graph by dynamically adding edges.

In addition, Aleksandrov et al. [5] used a similar
approach as in [4], but placing, for the first time, the
Steiner points on the bisectors of the angles, and not on
the face boundaries. However, this complicates compu-
tation of the discrete path because now the edges join
Steiner points that belong to neighboring faces.

See Table 1 for the time complexity of the approxi-
mation algorithms designed following these schemes.

Recently, it has been shown that the WRP cannot be
solved exactly within the Algebraic Computation Model
over the Rational Numbers (ACMQ) [6], i.e., a solution
to an instance of the WRP cannot be expressed as a
closed formula in ACMQ. This emphasizes the need
for high-quality approximate paths instead of optimal
paths. So, in practice, the geometric space is discretized
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Time complexity Reference
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ε
log n

ε log 1
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Table 1: ε-approximation algorithms for the Weighted
Region Problem.

using grids. The concept of grid is essential and heavily
used in digital elevation models (DEMs) [2, 10] and in
video games [8]. Because of their symmetry and natu-
ral neighborhood structure, regular triangle meshes are
preferred over square and hexagonal.

Although it is the most complex among the three reg-
ular tessellations (it has the largest number of vertices),
it has various advantages in applications, e.g., the dis-
tance between the vertices of adjacent cells is always
the same, which simplifies distance calculations. Trian-
gles can represent complex shapes, and they can include
hexagonal grids. Although they are built with triangles
in two different orientations, each pixel has 12 neighbors
sharing at least a corner, which gives a valid alternative
for applications in image processing. Recently, various
image processing algorithms have been defined and im-
plemented for the triangular grid, such as discrete to-
mography [14, 15], thinning [9], and mathematical mor-
phology [1].

1.1 Our results

In this paper, we present algorithms for computing ap-
proximate shortest paths between two vertices s and t
on a triangular tessellation. We work with the particu-
lar case in which every cell of the mesh is an equilateral
triangle. In addition, each cell has a positive real weight
associated to it.

Our results are based on a previous work of Aleksan-
drov et al. [5]. With a finer analysis, we improve the
results in two different ways:

1. If we use the same number of Steiner points as
in [5], we prove that the approximation factor is
minimized when placing the Steiner points on the
edges of the cells. In addition, we provide an upper
bound on the quality of the approximation path
with respect to the actual shortest path. Our re-
sult gives an approximation factor which is at least
5(1+ε)(7−ε)

7(5+ε) ≥ 1+ 0.428ε times better than the pre-

vious result.

2. If we decide to maintain the approximation factor
in each of the cells, we provide a discretization us-
ing fewer Steiner points than in [5]. We increase the

distance between Steiner points in each segment by

about a factor of 7−
√
ε

40 ≈ 0.175 − 0.025
√
ε, which

decreases the running time of the algorithm to de-
termine the approximation path.

To solve these problems, we use the traditional tech-
nique of partitioning the continuous 2D space into a
discrete space by designing an appropriate graph. Dif-
ferently from the previous work of Aleksandrov et al. [5],
the discretization is done by placing Steiner points along
a segment from each vertex of the mesh inclined by α ra-
dians. Then, we minimize the number of Steiner points
to be added by optimization over the angle α ∈ [0, π

3 ].
All these improvements were obtained by taking into ac-
count trigonometric properties from the points of entry
of the paths into the cells and carrying out a thorough
analysis when optimizing the results.

The paper is organized as follows: we start Section 2
by introducing the definitions that are needed for the
forthcoming calculations. We also provide Lemma 2,
where two properties about the entry and leaving points
of the shortest path are calculated. Then, in Section 2.1,
with the same number of Steiner points proposed by
Aleksandrov et al. [5] we improve their results on the
approximation factor of the whole path. Similarly, in
Section 2.2, we fix the approximation factor of 1 + ε

2
for each segment joining two points on the edges of a
cell, and we optimize the number of Steiner points to be
placed in each triangular cell. Finally, in Section 3 we
compare the results that we obtain with the previous
results from [5].

2 Equilateral triangle mesh

Let T be a triangular tessellation in the 2-dimensional
space. We will suppose that T is a connected union
of a finite number of equilateral triangles, denoted by
T1, . . . , Tn. Two triangles of the set can share a ver-
tex, an edge, or not being adjacent. Each face Ti, i ∈
{1, . . . , n}, of the tessellation has a positive weight ωi

associated to it. This weight represents the cost of trav-
eling through a face per unit of Euclidean distance.

Any continuous (rectifiable) curve lying in T is called
a path. Every path in T consists of a sequence of seg-
ments, whose endpoints are on the edges of T . Each of
these segments is of one of the following two types:

• face-crossing: the endpoints belong to adjacent
edges;

• edge-using: the endpoints belong to the same edge
of a face.

The cost of a path π is given by ∥π∥ =
∑n

i=1 ωi∥πi∥,
where ∥πi∥ denotes the Euclidean length of the inter-
section between π and a triangle Ti. In case πi is an
edge-using segment, then the cost of traveling along that
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Figure 1: d(x) is the length of the dotted segment. The
vertex vicinity of v is depicted in gray.

edge is the minimum of the weights of the triangles in-
cident to the edge. Given two distinct points s and t
in T , a shortest path π(s, t) is a path that minimizes
the weighted distance between s and t. Without loss of
generality, we may assume that s and t are vertices of
the tessellation.
A path π(s, t) is represented by a sequence of points

s = a0, . . . , aℓ = t lying on the edges. The points ai, i ∈
{1, . . . , ℓ − 1}, that are not vertices of the tessellation
are called bending points of the path.

Following notation from [5], the function d(x) is de-
fined as the minimum Euclidean distance from a point
x on a side of a triangle to the boundary of the union
of the faces containing x, see Figure 1.

For each vertex v of the tessellation T , let ωmax(v)
and ωmin(v) be, respectively, the maximum (finite)
weight and the minimum weight of the faces adjacent
to v. Let r(v) be the weighted radius of the vertex v
defined as follows:

r(v) =
ωmin

7ωmax
d(v)

Then, for each face adjacent to v, an equilateral tri-
angle with side length εr(v) is defined. Around v, a
regular hexagon S(v), called the vertex-vicinity of v, is
obtained, see Figure 1. Let e1 be the edge of Tj that is
encountered first when traversing the edges of Tj from v
in counterclockwise order. We also define ℓv(j, α) as the
segment in Tj from v inclined by α radians with respect
to e1, see Figure 2.

Definition 1 Let Tj be an equilateral triangle of the
tessellation T , and let v be a vertex of Tj. We define a
set of Steiner points p0, p1, . . . , pk on ℓv(j, α) by:

|pi−1pi| = a(ε) sinα|vpi−1|, for i ∈ {1, . . . , k}, (1)

where a : (0, 1] → R, p0 is the intersection point between
ℓv(j, α) and the boundary of S(v), and k is the largest
integer such that |vpk| ≤ |ℓv(j, α)|.

Lemma 2 Let e1, e2 be two edges adjacent to v in
Tj, and let x1, x2 be two points in e1 and e2, respec-
tively. Let p′ be the intersection point between |x1x2|
and ℓv(j, α). Let p be the closest Steiner point to p′.
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p

q

α ϕ
β′ β
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C
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Figure 2: Illustration of Lemma 2.

• Let θ be the angle ∠px1p
′, then

tan
θ

2
≤ 2

√
2
√
a sinα+ 2− a sinα− 4

a(cosα− 1)
. (2)

• Let A = 2
√
2
√
a sinα+2−a sinα−4
a(cosα−1) and B =

2
√
2
√

a sin (π
3 −α)+2−a sin (π

3 −α)−4

a(cos (π
3 −α)−1) , then

|x1p|+ |px2| ≤
Å
1 +

AB

1−AB

ã
|x1x2|. (3)

Proof. Let p′ belong to the segment [pi, pi+1]. We want
to calculate an upper bound on the value of the angle θ,
for any x1 and x2. It is well known, that θ is maximum
when the circle through p, p′ and x1 is tangent to e1.
So, let q be this point of tangency, and let C be the
center of the circle. Then, an upper bound on the angle
θ is given by the angle β = ∠pqp′, i.e., θ ≤ β. Let ρ
be the radius of the circle through pqp′. Let ρ + δ be
the distance from p to e1, see Figure 2. We define the
angle ∠p′pC as φ. So, considering the triangle formed
by p, C and the midpoint of the segment pp′, we have
that π = π

2 + β + φ ⇒ φ = π
2 − β. We also define the

angle β′ as β′ = φ− α = π
2 − β − α. Hence,{

sinβ′ = δ
ρ ⇒ δ = ρ sin (π2 − β − α)

sinα = ρ+δ
|vp| =

ρ(1+sin (π
2 −β−α))

|vp| .

Note that the angle β is maximum when p′ is the
midpoint of the segment pipi+1. Thus, if p = pi, and
using equation (1) with the triangle △qpip

′, we get that
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sinβ =
|pipi+1|

2

2ρ
=

a
2

ρ(1+sin (π
2 −β−α))

|vp| |vpi|
2ρ

=
a
2 (1 + sin (π2 − β − α))

2
=

a
2 (1 + cosβ cosα− sinβ sinα)

2

⇔ sinβ +
a
2 sinβ sinα

2
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a
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2

⇔ sinβ

Å
2 + a
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2

ã
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a sinα+ 2− a sinα− 4
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Now, suppose that p = pi+1. Then, following an
analogous reasoning as before, and using the fact that
|vpi| < |vp′| for triangle △qp′pi+1, we get that

sinβ =
|pipi+1|

2

2ρ
=

a
2

ρ(1+sin (π
2 −β−α))

|vp| |vpi|
2ρ

<
a
2 (1 + sin (π2 − β − α))

2

⇔ tan
β

2
<

2
√
2
√
a sinα+ 2− a sinα− 4

a(cosα− 1)
.

From the results above, we get that β is maximized
when p = pi, hence equation (2) is proved.

Finally, we prove equation (3). Let θ, θ1, and θ2
be the angles of the triangle px1x2 at p, x1, and x2,
respectively, see Figure 3.

Since θ1 + θ2 + θ = π, we known that

|x1p|+ |px2| ≤
Ç
1 +

2 sin θ1
2 sin θ2

2

sin θ
2

å
|x1x2|

=

Ç
1 +

2 tan θ1
2 tan θ2

2

1− tan θ1
2 tan θ2

2

å
|x1x2|.

Hence, using equation (2) for θ1 and θ2, we get the
desired formula. □

The results in Lemma 2 depend on the value of a
function a(ε). In order to improve the results in [5]
for equilateral meshes, we need to give a value for this
function.

2.1 Fixing the number of Steiner points

We first fix the distance between consecutive Steiner
points, which implies fixing the total number of Steiner
points in each triangular face. In this way, we are

x1

x2

p

θ1

θ2

θ

v

Tj

Figure 3: Illustration of Lemma 2.

improving the upper bound on the distance from x1

to x2 through a Steiner point p. In [5], the distance
between Steiner points on a segment was defined as
|pi−1pi| =

√
ε
2 sin

β
2 |vpi−1|, where β = 2α. So, if we

substitute a(ε) =
√

ε
2 in equation (2), we get that:

tan
θ1
2

≤
2
√
2
»√

ε
2 sinα+ 2−

√
ε
2 sinα− 4√

ε
2 (cosα− 1)
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θ2
2

≤
2
√
2
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ε
2 sin (

π
3 − α) + 2−

√
ε
2 sin (

π
3 − α)− 4√

ε
2 (cos (

π
3 − α)− 1)

,

where θ1, and θ2 are the angles of the triangle△px1x2

at x1, and x2, respectively, see Figure 3.
We want to minimize the upper bound on equation

(3) when a(ε) =
√

ε
2 . Thus, we get that this value is

maximized when α = π
6 , i.e., when the Steiner points are

placed at the bisectors of the triangles, and minimized
when α = π

3 , i.e., when the Steiner points are placed on
the sides of the triangles. Hence, using Lemma 2 when
placing the Steiner points on the sides of the triangles
gives us the following result:

Proposition 3 Let x1 and x2 be two points on two
edges e1 and e2 of a triangle Tj, and outside the ver-
tex vicinity of the vertex v incident to e1 and e2. If p
is the Steiner point closest to the intersection between
segment x1x2 and the segment ℓv(j,

π
3 ), then

|x1p|+ |px2| =
Ç

4
√
2
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6ε+ 8−
√
6ε− 24

−4
√
2
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6ε+ 8 +
√
6ε+ 8

å
|x1x2|

⪅ 1.042 · |x1x2| (4)

Once we have the approximation factor in each of the
cells, we need to calculate the approximation factor of
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the whole path. We first define a graph Gε that consists
of a set of vertices Vε, and a set of edges Eε. Using the
corners of the triangles and the set of Steiner points in-
troduced in Definition 1, we create the set of vertices Vε.
For the set of edges we need the notion of neighbor bi-
sectors introduced by Aleksandrov et al. [5]. A bisector
is a neighbor to itself. Two different bisectors are neigh-
bors if they belong to the same face of T . Now, consider
a pair (ℓ1, ℓ2) of neighbor bisectors. We join any pair of
nodes p and q lying on ℓ1 and ℓ2, respectively. The set of
all pairs (p, q) is the set Eε of edges. Once we have the
graph Gε associated to the discretization, we proceed to
compare the weighted length of the approximation path
and the actual shortest path in Theorem 4.

Theorem 4 Let π(s, t) be a weighted shortest path be-
tween two different vertices s and t on T . There
exists a path π̃(s, t) in Gε such that ∥π̃(s, t)∥ ≤Å
1 + 14(4

√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

ã
· ∥π(s, t)∥.

Proof. Let (s = v0, v1, . . . , vn = t) be the ordered set
of vertices of T such that π(s, t) intersects their vertex
vicinities. Let ai, bi, i ∈ {0, . . . , n}, be, respectively,
the last and first bending point on π(s, t) that is in the
vertex vicinity of vi. Thus, we obtain a sequence of
bending points s = b0, a0, b1, a1, . . . , an−1, bn, an = t on
π(s, t) such that segments of π(s, t) between ai and bi
are not contained in the vertex vicinities.
Consider the subsegment π(ai, bi+1), for some 0 ≤

i < n. A subpath π′(vi, vi+1) is defined [5] as the path
from vi to vi+1 along the sequence of bending points
of π(ai, bi+1). Using the triangle inequality, the fact
that ai ∈ S(vi), bi+1 ∈ S(vi+1), and the definition of
weighted radius, we get that

∥π′(vi, vi+1)∥ ≤ ∥viai∥+ ∥π(ai, bi+1)∥+ ∥bi+1vi+1∥

≤ ε

7
ωmin(vi)d(vi) + ∥π(ai, bi+1)∥

+
ε

7
ωmin(vi+1)d(vi+1).

Therefore, we obtain the path π′(s, t) = π′(s, v1) ∪
π′(v1, v2)∪ . . .∪π′(vn−1, t). Let x

i
j , j = 1, . . .m, be the

inner bending points of the subpath π(ai = xi
0, bi+1 =

xi
m+1). For each j = 0, . . . ,m, we define the point pij to

be the closest Steiner point to the intersection between
[xi

j , x
i
j+1] and ℓv(j,

π
3 ), where v is the common endpoint

of the edges containing xi
j and xi

j+1. Now, we create the
path π′′(s, t) = π′′(s, v1)∪ π′′(v1, v2)∪ . . .∪ π′′(vn−1, t),
where

π′′(vi, vi+1) = (vi, p
i
0, x

i
1, p

i
1, x

i
2, . . . , x

i
m, pim, vi+1).

Let A = 8
√
2
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6ε+8−2
√
6ε−32

−4
√
2
√√

6ε+8+
√
6ε+8

. It follows from (4) that

∥π′′(vi, vi+1)∥ ≤ (1 +A)∥π′(vi, vi+1)∥. Thus,

∥π′′(s, t)∥ =

n−1∑
i=0

∥π′′(vi, vi+1)∥ ≤ (1 +A)

n−1∑
i=0

∥π′(vi, vi+1)∥

≤ (1 +A)

n−1∑
i=0

(
∥π(ai, bi+1)∥+

εκi

7

)
, (5)

where κi = ωmin(vi)d(vi) + ωmin(vi+1)d(vi+1), so
it remains to determine an upper bound for the sum∑n−1

i=0 κi. So, using the definition of d(·) it follows that

κi ≤ ∥viai∥+ 2∥π(ai, bi+1)∥+ ∥bi+1vi+1∥

≤ 2∥π(ai, bi+1)∥+
εκi

7
=⇒ κi ≤

14

7− ε
∥π(ai, bi+1)∥.

This, when substituted in equation (5) implies that

(1 +A)

n−1∑
i=0

(
∥π(ai, bi+1)∥+

εκi

7

)
≤ (1 +A)

n−1∑
i=0

Å
∥π(ai, bi+1)∥+

ε

7
· 14

7− ε
∥π(ai, bi+1)∥

ã
= (1 +A)

7 + ε

7− ε

n−1∑
i=0

∥π(ai, bi+1)∥ ≤ (1 +A)
7 + ε

7− ε
∥π(s, t)∥.

(6)

Finally, two consecutive Steiner points pij and pij+1

lie on neighbor sides, and vi belongs to the same
edge as pi0 and vi+1 belongs to the same edge
as pim. Therefore, the sequence of points (vi =
pi0, p

i
1, . . . , p

i
m = vi+1) defines a path π̃(vi, vi+1), such

that ∥π̃(vi, vi+1)∥ ≤ ∥π′′(vi, vi+1)∥. If we com-
bine all the paths π̃(s, v1), . . . , π̃(vn−1, t), we get that
∥π̃(s, t)∥ ≤ ∥π′′(s, t)∥ ≤ (1 + A) 7+ε

7−ε∥π(s, t)∥. And the
result is proved. □

2.2 Fixing the approximation factor of segment join-
ing two points

The other parameter that we can fix is the approxima-
tion factor in each of the triangular cells. By doing this,
we are optimizing the number of Steiner points placed
in the faces. Using the approximation factor given by
Aleksandrov et al. [5], we prove that the distance be-
tween consecutive Steiner points can be decreased, see
Lemma 5. Due to space limitations, we defer the proof
to the full version of the paper.

Lemma 5 Let e1, e2 be two edges adjacent to v in Ti,
and let x1, x2 be two points in e1 and e2, respectively.

Let |pi−1pi| = 4(ε+2
√
ε
√
ε+4)√

3(ε+4)
sin π

3 |vpi−1|, i ∈ {1, . . . , k},
be the distance between two consecutive Steiner points in
side e2. Let p be the closest Steiner point to x2, then
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Figure 4: Comparison of approximation factor on a cell.
The red function represents y = 1 + ε

2 from [5], and
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ã
from Proposition 3.

|x1p|+ |px2| ≤
(
1 +

ε

2

)
|x1x2|.

The next lemma gives us an estimation on the num-
ber of Steiner points inserted on a particular side of a
triangle and on their total number. The result is ob-
tained by using Lemma 5, and the proof can be found
in the full version of the paper.

Lemma 6 1. The number of Steiner points inserted
on a side of a triangle Ti is upper bounded by
log2

2|ℓ|
r(v)

log2 e
3(ε+4)3

(2ε+4
√
ε
√
ε+4)(20ε2+76ε−(2ε+24)

√
ε
√
ε+4+48)

log2
2
ε .

2. The total number of Steiner points on T is less than

C(T ) 9n(ε+4)3

(2ε+4
√
ε
√
ε+4)(20ε2+76ε−(2ε+24)

√
ε
√
ε+4+48)

log2
2
ε ,

where C(T ) =
log2

2|ℓ|
minv∈T r(v)

log2 e

3 Discussion and future work

We provide some figures where we compare our results
with the ones given by Aleksandrov et al. [5]. First,
Figure 4 shows the error we commit when the segment
between two points on the boundary of two adjacent
edges of the tessellation is approximated by the subpath
through a Steiner point. The red function represents the
error obtained in [5], while the blue function represents
the error obtained in Proposition 3, for values of ε in
[0, 1]. Looking at Table 2, we notice that the error com-
mitted by our approach in each cell is about 70% less
than using results in [5].

Secondly, in Figure 5 we depict the error obtained
when the actual shortest path is approximated by the
approach in [5] (see red function) and our result in The-
orem 4 (see blue function). The error is shown for values

ε 1 + ε
2

4
√
2
√√

6ε+8−
√
6ε−24

−4
√
2
√√

6ε+8+
√
6ε+8

0 1 1
0.1 1.05 1.0044
0.2 1.1 1.0088
0.4 1.2 1.017
0.6 1.3 1.025
0.8 1.4 1.033
0.9 1.45 1.037
1 1.5 1.041

Table 2: Comparison of approximation factor on a cell.

ε1

1.2

1.4

1.6

1.8

2

2.2

0 0.2 0.4 0.6 0.8 1

Figure 5: Comparison of approximation factor of
paths. The red function represents y = 1 + ε
from [5], and the blue function represents y =Å
1 + 14(4

√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

ã
from Theorem 4.

of ε in the interval [0, 1]. These two functions show that

our result is at least 5(1+ε)(7−ε)
7(5+ε) times better than the

one provided in [5], i.e., about 150%. See also Table 3
for certain values of ε.

Recall that, in Figures 4 and 5, the approximation fac-
tors are obtained by using the same number of Steiner
points in our result and in [5].

Finally, let pi, pi+1 be two consecutive Steiner points
on a segment from a vertex v on a triangular cell inclined
by α radians. Then, Figure 6 represents the distance be-
tween pi and pi+1, divided by the distance |vpi|. The
function in red shows the results from [5] when placing
the points on the bisector from v, while the function in
blue shows our results when placing the points at the
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ε 1 + ε 1 + 14(4
√
2
√√

6ε+8−
√
6ε−8)−16(7+ε)

(−4
√
2
√√

6ε+8+
√
6ε+8)(7−ε)

0 1 1
0.1 1.1 1.033
0.2 1.2 1.068
0.4 1.4 1.14
0.6 1.6 1.217
0.8 1.8 1.3
0.9 1.9 1.343
1 2 1.3889

Table 3: Comparison of approximation factor of paths.

ε 1
2

√
ε
2

2(ε+2
√
ε
√
ε+4)

ε+4

0 0 0
0.1 0.111 0.673
0.2 0.158 0.968
0.4 0.223 1.387
0.6 0.273 1.705
0.8 0.316 1.966
0.9 0.335 2.081
1 0.353 2.188

Table 4: Comparison of distance between consecutive
Steiner points on the same cell.

sides of the cells. This value, using our result, is about
7−

√
ε

40 times larger than the value given by Lemma 5,
which is an improvement of the bound of about 500%.
See also Table 4 for some values of ε ∈ [0, 1]. For this
result, we are using the same approximation factor for
the segment between two bending points of the short-
est path on the boundary of the same cell as in [5].
Moreover, another consequence of Lemma 5 is that the
number of Steiner points that we add on each cell is less
than in [5], see also Lemma 6, part 1. Hence, we de-
crease the total number of points that are added to the
triangulation, see Lemma 6, part 2. Compared to [5],
our method reduces the number of Steiner points in at
least 4.5 times. Therefore, the space and time complex-
ity of algorithms that compute weighted shortest paths
(e.g., Dijkstra’s algorithm) using our approach is less
than the complexity of these algorithms using previous
results.

As future work, it would be interesting to work with
other types of regular grids, e.g., square or hexagonal,
or take into account other realistic scenarios like trian-
gulated irregular networks. Another possible extension
would be to work with 3D environments.

ε0

0.4

0.8

1.2

1.6

2

2.4

0 0.2 0.4 0.6 0.8 1

Figure 6: Comparison from Lemma 5. The red function
represents y = 1

2

√
ε
2 from [5], and the blue function

represents y = 2(ε+2
√
ε
√
ε+4)

ε+4 from Lemma 5.
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