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Quasi-Twisting Convex Polyhedra
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Abstract

We introduce a notion we call quasi-twisting that
cuts a convex polyhedron P into two halves and re-
glues the halves to form a different convex polyhedron.
The cut is along a simple closed quasigeodesic. We
initiate the study of the range of polyhedra produced
by quasi-twisting P, and in particular, whether P can
“quasi-twist flat,” i.e., produce a flat, doubly-covered
polygon. We establish a sufficient condition and some
necessary conditions, which allow us to show that of
the five Platonic solids, the tetrahedron, cube, and oc-
tahedron can quasi-twist flat. We conjecture that the
dodecahedron and icosahedron cannot quasi-twist flat,
and prove that they cannot under certain restrictions.
Many open problems remain.

1 Introduction

A geodesic v on a convex polyhedron P is a path that
has exactly m surface angle to either side at every point
of 7. So geodesics cannot pass through vertices. A
quastgeodesic has at most 7 angle to each side at every
point, and so can pass through vertices. Whereas most
convex polyhedra have no simple closed geodesic [10],
every convex polyhedron has at least three simple closed
quasigeodesics, a result of Pogorelov from 1949 [16].

In this paper we introduce an operation we call
quasi-twisting, which applies to any convex poly-
hedron P and any simple closed quasigeodesic (or
geodesic) @ on P. We imagine cutting along @ to sep-
arate P into two “halves” A and B, above and below
@, each with boundary 0A,0B. Let L be the length of
Q. Keeping B fixed, “glue” 0A to 0B, but shifted by
some fraction of L. (A and B are considered flexible but
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isometric surfaces during this gluing.) So A is “twisted”
with respect to B. By Alexandrov’s Gluing Theorem,
the result is a convex polyhedron P: the lengths of the
boundaries 0A, 0B are equal, so the gluing results in a
closed shape homeomorphic to a sphere. And because of
the < 7 quasigeodesic condition, both 0A and dB are
convex and so the re-gluing maintains < 27 at every
point along the seam.

Example. Before proceeding further, we illustrate with
an example. P is a unit cube, and quasigeodesic @ is
the path through six vertices illustrated in Fig. 1(a).
(We identify a vertex either by its index 4, or as v,
whichever is more convenient.) The angles to one side
of @ alternate between /2 and .

Cutting @ leaves A and B composed of three faces
each, with vertex v7 interior to A and antipodal vertex
v1 interior to B. The boundaries 0A and dB each in-
clude a copy of the six vertices of Q. Now we twist A one
unit counterclockwise from above, matching vertices of
A to B as follows.

W< N
N <— O
S <— Gt
Ut <— 0o
Q0 <— W~
> W

Three of the six vertices along ) cease to be vertices in
P. For example, vg — v5 joins 7 to 7 surface angle. The
result is a triangular bipyramid with base an equilateral
triangle of side length 2, and altitudes to v; and v; of

length /2/3.

1.1 Related Work

Reshaping. Previous work on reshaping convex poly-
hedra relies on Alexandrov’s Gluing Theorem [1, p.100]
(which we abbreviate AGT):

Theorem AGT If polygons are glued together satisfy-
ing three conditions:

1. All their perimeters are glued, without gaps or over-
lap.

2. At most 2w surface angle is glued at any point.

3. The result is homeomorphic to a sphere.
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Figure 1: Vertices identified by their indices. (a) @ =
265843. (b) After quasi-twisting 1 unit: 5 — 6,6 —
2,2 — 3, etc.

Then the result is a convex polyhedron (possibly degen-
erated to a doubly-covered convex polygon), unique up
to rigid motions.

A decade ago it was shown that every convex polyhe-
dron could be unfolded to a single planar piece (possibly
overlapping) and refolded to a different convex polyhe-
dron [5]. A recent significant extension of this line of
investigation showed (among other results) that any of
the five Platonic solids can transform to any other by a
sequence of at most six unfold-refold steps [4].

In a different direction, it was shown in [13] that, un-
der mild conditions, a vertex can be excised from a con-
vex polyhedron and transplanted elsewhere to create a
new convex polyhedron. And [14] showed that any con-
vex polyhedron can be converted to (a scaled copy) of
any other via a sequence of vertex “tailorings” —excising
a vertex along a digon and suturing the cut closed.

All of these reshaping results rely heavily on
Alexandrov’s Gluing Theorem, whose proof is non-
constructive. There is no practical algorithm for ac-
tually constructing the three-dimensional shape of the
polyhedron guaranteed by AGT; only an impractica-
ble pseudo-polynomial-time algorithm is available [11].
However, ad hoc calculations suffice for polyhedra with
a few vertices (say, 8), or significant symmetries. And
it seems possible that testing whether the polyhedron
guaranteed by AGT is a doubly-covered polygon is eas-
ier than the general case, although one attempt in this
direction did not achieve polynomial-time [12].

Quasigeodesics. Pogorelov’s proof that there are al-
ways at least three simple closed quasigeodesics on
a convex polyhedron is also non-constructive, and it
has long been an open problem to design an algo-
rithm to find a simple closed quasigeodesic (Open Prob-
lem 24.2 [7]). Recently there has been significant
progress. First, a pseudopolynomial algorithm for find-
ing at least one closed quasigeodesic (not necessarily
simple) was detailed in [6]. Second, an exponential al-

gorithm for finding all the simple closed quasigeodesics
was described in [3]. Despite this progress, there re-
mains no practical algorithm for finding simple closed
quasigeodesics.

Questions. The quasi-twist operation suggests many
questions, most fundamentally: From a given P, what
quasi-twisted P can result? A few remarks:

e Every P can be twisted to some P # P, because
every P has simple closed quasigeodesics.

e P could have as many as twice the number of ver-
tices as P, and as few as half the number. For ex-
ample, if P is a doubly-covered regular n-gon and
Q@ its boundary, then quasi-twisting by angle 7 /n
leads to P with double the number of vertices. Re-
versing the roles of P and P halves the number of
vertices.

e Quasi-twisting P can lead to an uncountably infi-
nite number of incongruent P. For example, quasi-
twisting a doubly-covered n-gon by different angles
in (0,7/n) leads to incongruent P.

The regular n-gon example connects to D-forms, gluing
two congruent convex shapes along their perimeters [7].

Since it is impractical both to find quasigeodesics and
to apply AGT, algorithmic questions are currently un-
approachable. Here we start the investigation of the
natural question: Which P can be quasi-twisted flat,
i.e., is it possible to quasi-twist P to a doubly-covered
polygon? We further narrow the question to the five
Platonic solids. We show that the regular tetrahedron,
the cube, and the regular octahedron can all quasi-
twist flat. We conjecture that neither the dodecahe-
dron nor the icosahedron can quasi-twist flat. Along
the way, we establish some sufficient conditions for flat-
tening by quasi-twists, and some necessary conditions,
leaving complete characterization unresolved.

For brevity, henceforth we shorten “simple closed
quasigeodesic” to quasigeodesic, and “simple closed
geodesic” to geodesic. In contrast, a geodesic seg-
ment is a geodesic path between distinct vertices on P.
A quasigeodesic is composed of geodesic segments.

2  Flattening with Perimeter ()

In the simplest examples of quasi-twisting to a doubly-
covered polygon, the quasigeodesic ) becomes the
perimeter of the doubly-covered polygon. We begin by
giving necessary and sufficient conditions for this. Later
we show that the regular tetrahedron and the cube sat-
isfy these conditions, and in fact, we can even find a
suitable @ in the 1-skeleton of P.
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Lemma 1 Quasi-twisting polyhedron P along a quasi-
geodesic QQ with twist T produces a doubly-covered poly-
gon whose perimeter is @ if and only if:

1. Q passes through every vertex of P;

2. At every point aligned by T, the angles on the two
sides of Q are equal.

Proof. Suppose the conditions hold. Because @ in-
cludes every vertex of P, the interiors of the two sides
A and B are empty of vertices, i.e., they are flat poly-
gons. Because 7 aligns points with equal angles (not
only at the vertices of the polygon, but also along the
sides), the two flat polygons are the same, so the result
is a doubly-covered polygon.

For the other direction, if @) is the perimeter of
a doubly-covered polygon, then ) must have passed
through every vertex of P, and the twist 7 has aligned
equal angles. O

1 (a) (®)

Figure 2: (a) Q = abed. (b) Quasi-twisting results in a
doubly-covered 1 x 1/3/2 rectangle.

This lemma is not, however, the only way to flatten P
by quasi-twisting. We have several examples of P and
Q@ that twist to flat polygons but which do not satisfy
the conditions of the lemma. Perhaps the simplest is )
determined by the midplane of a regular tetrahedron,
shown in Fig. 2(a). Here @ is a closed geodesic through
no vertices, with two vertices to each side. If the edges
are unit length, a twist by %, matching abed to beda,
results in a 1 x v/3/2 doubly-covered rectangle, shown
in (b). The four vertices become the corners of the
rectangle and @ is not the boundary of the rectangle.
We will show another example in Fig. 10.

3 Tetrahedron

The only quasigeodesic @ (up to relabeling) that in-
cludes all four vertices of a regular tetrahedron is shown
in Fig. 3(a). Cutting @ partitions P into A and B, each
alternating angles % and 2?” Quasi-twisting A one unit
lines up the angles to match, as required by Lemma 1,
resulting in a doubly-covered parallelogram, again al-

ternating % and %’T angles.

(@) (b)

Figure 3: (a) Regular tetrahedron twists to (b) doubly-
covered parallelogram.

4 Cube

We again follow Lemma 1. On a cube there is again
one (up to relabelings) 8-vertex quasigeodesic, as shown
in Fig. 4(a), alternating angles 7/2 and 7 along Q.
(The 3D shape of @ is sometimes known as a “napkin
holder.”) Quasi-twisting 2 units aligns the equal angles
and results in the 3 x 1 doubly-covered rectangle shown
in (b) of the figure: vs,vg,v7,vs become flat with in-
cident angle m + 7w, and the other four vertices have
doubled angle /2.

Using the same @) but quasi-twisting 1 unit results in
a doubly-covered hexagon, where @ is not the boundary
of the hexagon.

Figure 4: (a) @ = 15623784. (b) 3 x 1 doubly-covered
rectangle.

5 Octahedron

Here we still use a quasigeodesic @) passing through ev-
ery vertex of P, but we deviate from Lemma 1 in that we
no longer align equal angles. The 6-vertex quasigeodesic
Q@ shown in Fig. 5(a) has angles 7 times %, %, 1, %, %, 1.
Fig. 5(b) shows that A and B each consists of four faces.
Fig. 6(a) shows those faces unfolded, and (b) the result
of shifting A by one unit. Gluing 0A to 0B after this
shift results in creasing the layout as shown in (¢), which
folds to a doubly-covered 1 x /3 rectangle.
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Figure 5: (a) @ = 123645. (b) A and B each consist of
four faces.

Figure 6: (a) A and B unfolded. (b) Shifting B one
unit leftward. (c) Crease lines black. (d) Final doubly-
covered 1 x /3 rectangle.

Quasi-twisting the different quasigeodesic shown in
Fig. 7 by 1 unit leads to a doubly-covered equilateral
triangle.

(b)

Figure 7: (a) Quasigeodesic Q = 126345. (b) Doubly-
covered equilateral triangle, side length 2.

6 Dodecahedron and Icosahedron

We conjecture that neither the dodecahedron nor the
icosahedron can quasi-twist to a doubly-covered poly-
gon. We provide support for this conjecture by show-
ing that the approach followed above—mnamely to use
a quasigeodesic through all vertices—is not possible for

the icosahedron or dodecahedron because no such quasi-
geodesics exist. We then discuss the challenges remain-
ing to prove the conjecture, challenges that indicate
what may be needed for a broader understanding of
quasi-twists.

Lemma 2 Any quasigeodesic Q on the icosahedron
passes through at most 10 of the 12 vertices.

Proof. Suppose @ passes through m vertices. Partition
Q@ at the edges of the icosahedron into segments so
that each segment is either: an edge of the icosahedron;
a segment that crosses a face and is incident to one
vertex of that face (we call these rays); or a segment
that crosses a face and is not incident to a vertex of
that face. Suppose there are k edge segments, and r
ray segments. Our counting argument need not include
segments of the third type. First observe that @) consists
of m vertex-to-vertex paths, each of which is an edge,
or includes exactly two rays (one at either end of the
path). Thus m =k + 3r, so r = 2m — 2k.

Next, we claim (the argument is below) that each of
the 20 triangle faces can contain at most one edge or ray
segment. Since an edge is contained in two triangles,
it counts twice. Thus 2k + r < 20, and substituting
r = 2m — 2k gives 2m < 20, so m < 10.

To prove the claim, suppose a face contains two edge
or ray segments. If they are incident to the same ver-
tex, then they must be consecutive on @, and the angle
between them is < %, leaving > %’“ to the other side,
violating the quasigeodesic condition. Otherwise (since
a triangle does not have two vertex-disjoint edges), one
segment must be a ray segment, say from vertex v to
the opposite edge, and the other edge/ray segment must
intersect it, see Figure 8(a). O

V4 V4
V3 Vs V3
Vi V2 141 V)
(@) (b) (©

Figure 8: (a) Triangle of icosahedron. (b) Two rays and
one edge in a dodecahedron face. (¢) A chord vyv3 and
a ray.

We now turn to the dodecahedron. The argument
parallels that of the icosahedron.

Lemma 3 Any quasigeodesic on the dodecahedron
passes through at most 18 of the 20 vertices.

Proof. Suppose @ passes through m vertices. We fol-
low the same plan as in Lemma 2. Partition @) at the
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edges of the dodecahedron into segments. Here we have
four types of segments: an edge of the dodecahedron; a
segment that crosses a face from vertex to vertex (we
call these chords); a segment that crosses a face and
is incident to one vertex (again rays); or a segment
that crosses a face and is not incident to any vertex of
that face. Suppose there are k edge segments, ¢ chord
segments, and r ray segments. Again the counting argu-
ment need not include crossing segments, the last type.
Henceforth we use segments to refer to edges, chords,
and rays. Since () consists of m vertex-to-vertex paths,
each of which is an edge, a chord, or includes exactly two
rays, we have m = k+c+ ér and thus r = 2m — 2k — 2c.

We make two claims about segments within a face to
complete our counting argument.

e A face can contain three segments, but cannot con-
tain four segments.

e If a face contains a chord then it has at most one
other segment, and that other segment cannot be
a chord.

See Fig. 8(b,c). These claims are proved below. The
claims imply that each of the ¢ chords is in a unique face
with at most one other edge/ray segment, and the re-
maining 12—c faces each contain at most three edge/ray
segments. Again, each edge segment counts twice since
it lies in two faces. Thus 2k 4+ r < ¢+ 3(12 — ¢). Sub-
stituting for r we obtain 2m — 2¢ < ¢+ 3(12 — ¢), which
gives 2m < 36, so m < 18.

To prove the claims, first suppose a face contains two
segments incident to the same vertex. Then they must
be consecutive on @, and the angle between them is
< 108° leaving > 216° to the other side, violating the
quasigeodesic condition.

Next, consider the (disjoint) segments in the face. See
Fig. 8(b). Each one cuts the face into two “sides,” and
we say that an “empty side” is a piece that contains no
other segment. There are at least two empty sides and
each (closed) empty side contains at least two vertices,
leaving only one remaining vertex for a third (and last)
segment. Thus there are at most three segments. There
cannot be two (disjoint) chords, and if there is a chord,
then one of its sides must be empty, and contains three
vertices. Furthermore, a second empty side contains two
vertices, so there cannot be a third segment. O

We do not believe either Lemma 2 or Lemma 3 is tight,
in that it seems neither 10- nor 18-vertex quasigeodesics
are achievable on the icosahedron and dodecahedron re-
spectively.

6.1 Conjecture Revisited

Having eliminated the possibility of using Lemma 1, the
dodecahedron and the icosahedron could only twist to a
flat polygon if @ does not include all the vertices. Then

the vertices not on @ must flatten to the boundary of
the doubly-covered convex polygon.

Again we use P to represent P after quasi- thbtlIlg
flat, and Q to represent the image of @ on P. Thus
Qis a quasigeodesic on P. Note that dP is itself a
quasigeodesic of P and indeed a straightest such quasi-
geodesic in the sense that it bisects the angle at each
vertex through which it passes.!

If @Q does not pass through all the vertices of P, then,
by Lemma 1, Q is different from 9P, though they may
share edges (see for example Figs. 2 and 6). It is tempt-
ing to imagine that there will be only two intersections
between Q and AP as in those examples, in which case
the two sections of P would lift to straightest quasi-
geodesic paths on A and B. However, the following
example shows that there may be more than two inter-
sections.

Let P be the doubly-covered rectangle shown in
Fig. 9(a), and @ the horizontal bisector on the front
and back, with vy, v3 above @ in A and vs,v4 below in
B. P is already flattened, but we can still quasi-twist.
Quasi-twisting by v/2 /2 leads to the doubly-covered unit
square shown in (b). Directing Q as wzyz, we have
v1,vs left of @ and wvo, vy right. This is not surprising,
as the interiors of A and B are unaffected by quasi-
twisting and gluing along their boundaries. What is
perhaps surprising is that OP is partitioned into four
sections by Q, not the two sections one might expect.

Vi V3 N\

Vi X %)

(a) (b)

Figure 9: (a) v/2 x v/2/2 doubly-covered rectangle.
(b) 1 x 1 doubly-covered square. Dashed portion of @
lie on the back side.

At the other extreme, one might ask if P can quasi-
twist flat using a geodesic, i.e., one that does not pass
through any vertices of P. This is possible for the tetra-
hedron (Fig. 2), and also for the octahedron (Fig. 10).
There are three different geodesics on the cube [9, §],
but our experimental results show that none of them
permit flat quasi-twisting. We conjecture that the icosa-
hedron and dodecahedron cannot be twisted flat at true
geodesics either. Fuchs and Fuchs [9] categorize the
three possible geodesics on the icosahedron, but the case
of the dodecahedron is apparently unresolved.

IThe term “straightest geodesic” is from [17].
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To summarize, we do not know if the icosahedron or
dodecadedron can quasi-twist flat. A main difficulty is
that we lack an understanding of when a quasigeodesic
allows a flat quasi-twisting. Another impediment is that
there is no complete inventory of the (simple) quasi-
geodesics on the dodecahedron or icosahedron. Just
recently a 1-vertex quasigeodesic on the dodecahedron
was found [2]. Even tetrahedra can have as many as 34
incongruent quasigeodesics [15].

5

Crease along 35
and fold to back

6 4

(d) (c)

Figure 10: (a) Geodesic on octahedron. (b) A and B
unfolded. (c) After quasi-twisting by v/3/2. (d) Doubly-
covered hexagon.

7 Open Problems

Because the quasi-twisting concept is new, almost every
question one could pose is open. It would be interest-
ing to know which polyhedra can be obtained from P
by repeated quasi-twisting. Finding more substantive
necessary conditions for quasi-twisting flat could resolve
flattening the Platonic solids.

We emphasized quasi-twisting from P to a flat poly-
hedron P. The reverse viewpoint is equally interest-
ing. We mentioned in Section 1 that a doubly-covered
regular n-gon could be viewed as a discrete version of
a D-form. It is natural to explore what shapes can
be quasi-twisted from doubly-covered convex polygons.
Even restricting to doubly-covered rectangles is inter-
esting. For example, Fig. 11 illustrates quasi-twisting a
doubly-covered square using the perimeter as the quasi-
geodesic.
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Figure 11: Snapshots of quasi-quasi-twisting a doubly-
covered square. See https://klaramundilova.com/
square-twist/.
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