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Maximum Subbarcode Matching and Subbarcode Distance
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Abstract

We investigate the maximum subbarcode matching
problem which arises from the study of persistent ho-
mology and introduce the subbarcode distance on bar-
codes. A barcode is a set of intervals which corre-
spond to topological features in data and is the out-
put of a persistent homology computation. A barcode
A has a subbarcode matching to B if each interval in
A matches to an interval in B which contains it. We
present an algorithm which takes two barcodes, A and
B, and returns a maximum subbarcode matching. The
subbarcode matching algorithm we present is a gener-
alization of the up-right matching algorithm given by
Karp et al [11]. Our algorithm also works on multi-
set input. It has O(n log n) runtime, where n is the
number of distinct intervals in the barcodes. We show
that the subbarcode relation is transitive and induces
a partial order on barcodes. We introduce subbarcode
distance and show that the subbarcode distance is a
lower bound for bottleneck distance. We also give an
algorithm to compute subbarcode distance, which has
expected O(n log2 n) runtime and uses O(n) space.

1 Introduction

In persistent homology the barcode is a multiset of in-
tervals encoding topological information. There is new
interest in the implications arising when one has only
partial knowledge or an approximation of the barcode.
For example, in recent work, Chubet et al [3] establish
that one can use subbarcodes in topological data anal-
ysis to make strong claims about an unknown function
given only upper and lower bounds. Having efficient
subbarcode matching algorithms allows one to imple-
ment strategies suggested by these new theoretical de-
velopements. The subbarcode matching algorithm and
subbarcode distance are practical tools for comparing
the topological invariants of two datasets.

2 Background

A multiset A = (A,ωA) is a pair consisting of a set A
and a multiplicity function ωA : A→ N. The weight of
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A is the sum of the multiplicities of the elements of A,

denoted, |A| =
∑
a∈A

ωA(a).

A matching M between multisets A = (A,ωA) and
B = (B,ωB) is a multiset M = (M,ω) where M ⊂ A×B
with multiplicity function ω : M → N such that∑

b∈B

ω(a, b) ≤ ωA(a) for all a ∈ A and∑
a∈A

ω(a, b) ≤ ωB(b) for all b ∈ B.

A matching M is a maximum matching if it has maxi-
mum weight over all valid matchings. If |M| = |A| = |B|
then we call M a perfect matching.

An interval is a pair (ax, ay) for ax, ay ∈ R. See
Figure 1. Given intervals s = (sL, sR) and b = (bL, bR),
if

bL ≤ sL, and sR ≤ bR.

then b contains s, denoted s � b. Containment of inter-
vals defines a partial order on intervals.

A barcode B = (B,ωB) is a multiset where B is a
set of intervals. A subbarcode matching from S to B is

y = xy

x

Figure 1: We may represent intervals as points in R2 by
taking their endpoints as coordinates .

a multiset matching M = (M,ωM ), of S and B, where
(s, b) ∈M implies s � b. See Figure 2.

The maximum subbarcode matching problem is to
find a subbarcode matching of maximum weight. If
there exists a subbarcode matching M from A to B such
that |M| = |A|, then we call A a subbarcode of B, de-
noted A v B.



34th Canadian Conference on Computational Geometry, 2022

p

x

y

Figure 2: Any point in the upper shaded region contains
p as an interval. Any point in the lower shaded region
is contained in p as an interval.

3 Related Work

Traditionally, persistence diagrams have been compared
via bottleneck distance. Bottleneck matching is an
instance of the assignment problem. The traditional
Hopcroft-Karp algorithm for maximum matching in bi-
partite graphs runs in O(n

5
2 ) [10]. However, Efrat et

al [5] reduced this runtime to O(n
3
2 log n) by using a ge-

ometric data structure. Kerber et al [12] also improved
this algorithm for persistence diagrams, using k-d trees.

We use a sweepline approach in our subbarcode
matching algorithm [1]. Our algorithm builds upon the
up-right matching algorithm given by Karp et al [11].
In the case of matching finite subsets of the unit square,
this algorithm has been proven to find the optimal
matching. Two additional related problems include the
maximum matching problem for intersecting intervals
[2] and maximum matching in convex bipartite graphs
[7, 13, 8]. The strategy used in these algorithms is to
avoid backtracking to keep the total operations per ele-
ment small.

4 Subbarcode Algorithm

We present an algorithm to compute a linear-sized
maximum multiset subbarcode matching. See Figure 4.

submatch(A,B):
Input Two barcodes: A = (A,ωA), B = (B,ωB)
Output A subbarcode matching from A to B

Sort A ∪B by the x-coordinates.
Initialize T to be an empty balanced binary search
tree to store points from B ordered by y-coordinate.
Initialize residual weights rb = ωB(b) for each b ∈ B
and ra = ωA(a) for each a ∈ A.
Initialize (M, W) to store the matching and multiplici-
ties.
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y

n

n
n

n
n

n

Figure 3: Two barcodes for which there exists a
quadratic size subbarcode matchings.

For each p ∈ A ∪B, where p = (px, py):

If p ∈ B, insert b into T.
Else

While rp > 0:

Search for b ∈ T with minimum by such that
by ≥ py.
If there is none, then break.

Let r = min{rp, rb}.
Add (p, b) to M and set W[(p, b)] = r,
then update the residual weights of p and b:
rp = rp − r and rb = rb − r.

If rb = 0, then remove b from T.

Return (M, W).

When both input weight functions uniformly map all
elements to 1 this algorithm reduces to the up-right
matching algorithm presented by Karp et al [11]. In
this case, it is clear that the output size is linear. How-
ever, in the case where we are matching multisets, it is
possible for a subbarcode matching to have quadratic
size.

For example, suppose there are n intervals in bar-
codes A and B respectively such that all intervals have
multiplicity n and all intervals in A are subbars of all
intervals in B, as depicted in Figure 3. Then a valid
matching could match each interval in A once with each
of the intervals in B. This illustrates the significance of
a linear-size guarantee.

In the following lemma we prove that the output re-
mains linear.

Lemma 1 Let A = (A,ωA) and B = (B,ωB) be bar-
codes. The subbarcode matching M = submatch(A,B)
has size O(n), where n = #A+ #B.

In particular, #M ≤ n.

Proof. Let (M,ω) = submatch(A,B). Let G = (V,M)
be the weighted graph induced by taking M as the edge
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Figure 4: We find a maximum subbarcode matching from A to B (circles and squares respectively) labeled by their
multiplicities. We iterate through A in order of x-coordinate and match to the point in B with lowest y-coordinate.
Each edge represents the match labeled with the multiplicity, and the residual multiplicities are updated for A and
B accordingly.

set with weights given by ω. All edges (a, b) ∈ M ⊆
A×B. Let m = #M , and n = #V .

We know m = 1
2

∑
v∈V deg(v) to be a property of all

graphs. BecauseG is bipartite, it is sufficient to consider
only the degrees of elements in A. We partition A into
high and low degree nodes,

H = {a ∈ A | deg(a) ≥ 2} and L = A \H.

Then, m =
∑
a∈H

deg(a) +
∑
a∈L

deg(a).

For a ∈ H, consider the sequence (b0, . . . , br) of all
points in B adjacent to a in G, where b0 is the first
point to match to a and br is the last point to match
to a. Then for bi ∈ {b0, . . . , br−1} we know that a is
the last point to match to bi, because the algorithm
does not proceed to matching bi+1 until the remaining
multiplicity of bi is matched.

Each point in B can only have one point being the
last to match to it, so∑

a∈H
deg(a) ≤ #H + #B and

∑
a∈L

deg(a) ≤ #L.

Therefore, m ≤ #H + #L+ #B ≤ n. �

Theorem 2 submatch uses O(n) space.

Proof. The only structures maintained during
submatch are the input, the output, and the
search tree. The input and search tree are linear size.
By Lemma 1, the output of submatch is linear size as
well. Thus total space used is O(n). �

Theorem 3 The matching from submatch is maxi-
mum.

Proof. First consider the case where A = (A,ωA) and
B = (B,ωB) with ωA ≡ ωB ≡ 1. Then submatch
reduces to the up-right matching algorithm given by
Karp et al [11], which has previously been shown to be
optimal.

If we consider two barcodes A = (A,ωA) and B =
(B,ωB), we can construct A′ = (A′, ω′A), B′ = (B′, ω′B)
such that ∀a ∈ A we have ωA(a) distinct copies a(i) of
a in A′, for i ∈ {1, . . . , ωA(a)}. Similarly, b(j) ∈ B′ for
j ∈ {1, . . . , ω′B(b)}. Then we have reduced the input to
the first case described above. �

Theorem 4 submatch computes a linear-sized maxi-
mum subbarcode matching in O(n log n) time.

Proof. Let A = (A,ωA) and B = (B,ωB) be barcodes.
Let T be search tree constructed in submatch and let
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M = (M,ω) be the output matching. Let G = (V,M)
be the graph induced by taking M as the edge set.
Given a ∈ A each time we search T either we find a
match or we don’t. We find a match deg(a) times, and
we don’t find a match at most once. It follows, the num-
ber of searches is at most

∑
a∈A(deg(a)+1) = #M+#A.

In Lemma 1 we proved that #M is linear size. Thus,
the number of searches is O(n). Furthermore, there are
O(n) insertions and deletions and T is balanced, so each
search operation takes O(log n). Therefore, the runtime
is O(n log n). �

5 Subbarcode Transitivity

For intervals a and b, recall that a � b if b contains a.
Transitivity of set matching follows easily by compos-

ing the matchings. However, functions over multisets do
not have a well-defined composition. In 1957, Ford and
Fulkerson showed that Hall’s Theorem for systems of
representitives could equivalently be expressed in terms
of flow networks [6, 9]. We use this approach to show
the existence of a subbarcode matching is transitive.

Lemma 5 (Transitivity) If A v B and B v C then
A v C.

Proof. Given barcodes A = (A,ωA), B = (B,ωB), and
C = (C,ωC) with subbarcode matchings (M,ωM ) for
A v B and (T, ωT ) for B v C, there is a corresponding
network, Net(G), where G = (A t B t C, M t T ) is a
digraph [6, 4]. See Figure 5.

s ωA

A

ωM

CB

ωT
tωB

Figure 5: An (s, t)-flow f in Net(G) corresponds to a
matching of A and C.

If f is a max-flow in Net(G), then the corresponding
matching is maximum and the value of the flow, |f |, is
equal to the weight of the matching [4]. In Appendix A
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ωM
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B

s ωA ωM ωT t
ωC

Figure 6: The the capacity of an arbitrary cut, (L,L)
of Net(G).

we show that c(L,L) ≥ |A| for any cut (L,L) of Net(G).
See Figure 6. Therefore A v C. �

Corollary 6 The relation v defines a partial order on
barcodes.

We call the poset of barcodes (Bar,v).

6 Shifted Subbarcodes

There are cases where the maximum matching is not
sufficient. Rather, one prefers to know “how far off” two
barcodes are from having a subbarcode matching. For
example, if we have only an approximation to the input,
we can consider the maximum matching after shifting
one set by distance δ. There are cases when only a small
shift is needed to obtain a subbarcode matching.

If A 6v B, we can determine the minimum shift of
A such that the translation results in a subbarcode of
B. We use this minimum shift to define a metric on
barcodes.

A δ-shift of A = (A,ω) is a barcode Aδ where

Aδ := (δ(A), ω ◦ δ−1) and

δ(a) := (ax + δ, ay − δ).

Let A and B be barcodes such that |A| = |B|. The
subbarcode distance is

dS(A,B) := max{min
δ≥0

Aδ v B,min
δ≥0

Bδ v A}.

The subbarcode distance is similar to Hausdorff dis-
tance in that it is bidirectional and asymmetric in na-
ture.

Lemma 7 (Approximation is additive.) If Aδ v B and
Bε v C then Aδ+ε v C.

Proof. Let A, B, and C be barcodes such that Aδ v B
and Bε v C. Consider intervals, a and b.

If a � b, then ax ≥ bx and ay ≤ by.

Then, ax + δ ≥ bx + δ and ay − δ ≤ by − δ.

Thus, δ(a) � δ(b).
By extension, if A v B, then Aδ v Bδ. By assump-

tion, Aδ v B, so it follows, Aδ+ε v Bε. Thus by transi-
tivity of subbarcodes (Lemma 5), Aδ+ε v C. �

Lemma 8 (Triangle Inequality)

dS(A,C) ≤ dS(A,B) + dS(B,C)

Proof. Let A,B, and C be barcodes. Suppose
dS(A,B) = δ and dS(B,C) = ε. Then by definition,

Aδ v B, Bδ v A, Bε v C, and Cε v B.

By Lemma 7, it follows Aδ+ε v C and Cδ+ε v A.
Therefore dS(A,C) ≤ δ + ε. �

The remaining metric properties are easily verified,
so we may conclude the following theorem.

Theorem 9 The subbarcode distance is a metric on
barcodes.



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

7 Subbarcode Distance Computation

In this section we present algorithms which allow us to
compute the subbarcode distance. The goal is to com-
pute the minimum shift such that we have a subbarcode
matching. To find this shift it is useful to determine
cases in which we may easily recognize that we have
shifted by an excesse amount.

Lemma 10 For a subbarcode matching, (M,ω), of
A∆ v B, let

γ = min
(∆(a),b)∈M

min{ax + ∆− bx, by − ay + ∆}.

Then A∆−γ v B.

Proof. For all (∆(a), b) ∈ M , ae + ∆ − bx ≥ γ, and
by − ay + ∆ ≥ γ. So, ax + (∆ − γ) ≥ bx, and by ≥
ay − (∆− γ). Therefore A∆−γ v B. �

We can think of γ as an excess shift of A. That is,
we could have shifted A by a distance γ less than we
did and the corresponding matching is still be a valid
matching. So intuitively, if the shift is the subbarcode
distance, then γ = 0 because there can be no excess
shift.

In the next lemma we prove that the subbarcode dis-
tance, similar to Hausdorff distance and bottleneck dis-
tance, is determined by a pair from A and B. This
motivates us to devise a search method to find this pair.

Lemma 11 For some (a, b) ∈ A×B,

dS(A,B) = min{ax − bx, by − ay}.

Proof. Let ∆ = dS(A,B). Then there is a subbarcode
matching (M,ω) for A∆ v B. By Lemma 10, A∆−γ v B
for γ = min(∆(a),b)∈M min{ax − bx, by − ay}. It follows
that γ = 0 because ∆ is minimum. So ∆ = min{ax −
bx, by − ay} for some (a, b) ∈ A×B. �

Lemma 11 enables us to compute dS by finding the
correct pair in A × B. There are n2 possibilities, how-
ever, we search these possibilities efficiently by taking a
uniform sample of the endpoints for which the difference
is within given upper and lower bounds.

For barcodes (A,ωA) and (B,ωB), define:

ub := max{(max
b∈B

bx −min
a∈A

ax), (max
a∈A

ay −min
b∈B

by), 0}

lb := max{(max
b∈B

bx −max
a∈A

ax), (min
a∈A

ay −min
b∈B

by), 0}.

Here, the upper bound ub is simply the distance be-
tween the farthest corners of the minimum bounding
rectangles of A and B. The lower bound lb is the dis-
tance between the bottom right corners of the minimum
bounding rectangles. These may be replaced with any
suitable upper and lower bounds.

In minshift we use these bounds to perform a binary
search through all pairs of coordinate differences in or-
der to find the points that give us the exact subbarcode
distance.

minshift(A,B, lb,ub):
Input: Barcodes A,B, and upper and lower bounds
lb ≤ dS(A,B) ≤ ub
Output: The subbarcode distance, ∆

Let x, y be the sorted x- and y-coordinates of A ∪B.
∆ = sample(x,y, lb,ub)
While ∆ exists:

(M,ω) = submatch(A∆,B)
If (M,ω) is a perfect matching, set ub = ∆.
Else lb = ∆
∆ = sample(x,y, lb,ub)

Return ub

A binary search is made possible by using sample to
obtain a uniform random sample of all pairs with co-
ordinate differences contained within the given bounds.
In a linear scan of the sets of x- and y-coordinates we
determine the prevalence of each coordinate in the set
suitable pairs. We then sample a pair from this set and
return the minimum coordinate difference. See Figure 7
and Figure 8.

sample(x,y, lb,ub):
Input: Sorted lists x and y, and bounds lb and ub
Output: A uniform random sample

In a linear scan of x, find indices, li and ui, such that

x[li − 1] ≤x[i] + lb < x[li],

and x[ui] <x[i] + ub ≤ x[ui + 1].

Similarly, scanning y, find indices, l′i and u′i, such that

y[u′i − 1] ≤y[i]− ub < y[u′i],

and y[l′i] <y[i]− lb ≤ y[l′i + 1].

If li = ui and l′i = u′i for all i, return nothing.
Otherwise, sample an index i with probability pro-
portional to (ui − li) + (l′i − u′i).
Sample endpoint e uniformly from x[li : ui]ty[u′i : l′i].
If e is from x then return e − x[i]. Otherwise return
y[i]− e.

Theorem 12 minshift computes the subbarcode dis-
tance with an expected O(n log2 n) time.

Proof. Using sample to get a uniform sample of all
pairwise distances of endpoints, minshift reduces to a



34th Canadian Conference on Computational Geometry, 2022

X
i li ui

Figure 7: If X[i] is an endpoint and X[j] is from the
range X[li : ui] then lb < X[j]−X[i] < ub.

a

lb

ub

Figure 8: Depicted above are the points considered by
sample for a single point a ∈ A. The points in the
shaded region form a subset of B for which the minimum
coordinate differences are within the bounds given.

randomized binary search over n2 elements. Thus there
is an expected O(log n) iterations, where each iteration
is O(n log n). Therefore minshift has expected runtime
O(n log2 n). �

8 Persistence Diagrams

In topological data analysis it is common to compare
persistence diagrams rather than barcodes. In this sec-
tion we show that, with slight modification, the algo-
rithms presented in Section 7 also apply in this setting.

The diagonal of R is the set D = {(x, x) | x ∈ R}.
A persistence diagram for a barcode B = (B,ωB) is a
multiset PD(B) := (B ∪ D, ω), where

ω(x) =

{
ωB(x), x ∈ B
∞, x ∈ D.

We have added the diagonal of R with infinite multi-
plicity.

Let PD(A) = (A ∪ D, ω), be a persistence diagram.
Note that shifting this diagram by δ gives us the multi-
set

PD(A)δ = (δ(A ∪ D), ω ◦ δ−1).

It is useful to refer to only the points above the diagonal,
because points which have been shifted below y = x
can now match to the diagonal. We denote this as [Xδ],
where X is a barcode.

Lemma 13 Let A = (A,ωA) and B = (B,ωB) be bar-
codes. Then

PD(A)δ v PD(B) if and only if [Aδ] v B.

Proof. Let (M,ω) be a subbarcode matching for
PD(A)δ v PD(B). Consider a ∈ [δ(A)]. Note that

if (a, b) ∈ M , then b 6∈ D,so we can restrict M to
M ∩ ([δ(A)]×B) to obtain a matching for [Aδ] v B.

Now let (N,ω) be a matching for [Aδ] v B. For any
a ∈ δ(A∪D)\ [δ(A)], there is d = (ax, ax) ∈ D such that
a � d ∈ D. Because d has infinite multiplicity in PD(B),
we can add (a, d) to N and set ω(a, d) = ωA ◦ δ−1(a).
Thus N is a subbarcode matching. �

This result allows us to compute a subbarcode match-
ing of persistence diagrams PD(Aδ) and PD(B) by
computing submatch([Aδ],B). Additionally, we can
compute dS(PD(A),PD(B)) by modifying minshift
slightly. Rather than returning the minimum ∆ such
that A∆ v B, we return the minimum ∆ such that
[A∆] v B.

Note that because persistence diagrams fall under our
definition of barcodes, the subbarcode distance is also a
metric on persistence diagrams.

9 Subbarcode Distance and Bottleneck Distance

In this section we establish the relationship between the
subbarcode distance and bottleneck distance.

Let A and B be barcodes such that |A| = |B|. LetM
be the set of all possible perfect matchings between A
and B. The bottleneck distance is

dB(A,B) := min
(M,ω)∈M

{
max

(a,b)∈M
||a− b||∞

}
A bottleneck matching between barcodes A and B is a
matching M = (M,ω) where

max
(a,b)∈M

||a− b||∞ = dB(A,B).

Theorem 14 For any two barcodes A and B, where
|A| = |B|,

dS(A,B) ≤ dB(A,B).

Proof. Let M = (M,ωM ) be a bottleneck matching be-
tween A and B. Let β := dB(A,B). Then for any edge
(a, b) ∈M , ||a− b||∞ ≤ β. Moreover, |bx − ax| ≤ β and
|by−ay| ≤ β. It follows that bx ≤ ax+β and ay−β ≤ by,
implying β(a) � b for each (a, b) ∈M . We can then con-
struct a matching as follows: Let T = (T, ωT ), where

T = {(β(a), b) | (a, b) ∈M} and

ωT (β(a), b) := ωM (a, b).

Then T is a subbarcode matching. We note that |T| =
|M| and |A| = |Aβ |. Additionally, M is a perfect match-
ing, so |M| = |A| = |B|. It follows that Aβ v B. By
a similar argument we may also show that Bβ v A.
Therefore, dS(A,B) ≤ β = dB(A,B). �
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10 Conclusion

We have given an efficient method for computing max-
imum subbarcode matchings and subbarcode distance.
We have shown that barcodes are a poset under the
subbarcode relation, and that subbarcode distance is a
metric on persistence diagrams. Subbarcodes present ef-
ficient methods of comparison for persistence diagrams.
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A Subbarcode Transitivity

Lemma 15 (Transitivity) If A v B and B v C then A v C.

Proof. Let A = (A,ωA), B = (B,ωB), and C = (C,ωC) be
barcodes such that A v B and B v C. Then there exists
subbarcode matchings, (M,ωM ) from A to B and (T, ωT )
from B to C.

Let Net(G) be the corresponding network to find the the
maximum subbarcode matching from A to C, as described in
Section 5. Let (L,L) be a cut of Net(G). Then L = XtY tZ
and L = X t Y t Z for

X = A ∩ L Y = B ∩ L Z = C ∩ L

X = A \X Y = B \ Y Z = C \ Z

We examine c(L,L):

c(L,L) = c(X t Y t Z, X t Y t Z)

= c(s,X) + c(X,Y ) + c(Y, Z) + c(Z, t)

We now evaluate each term:

c(s,X) =
∑
a∈X

ωA(a) c(X,Y ) =
∑
a∈X

∑
b∈Y

ωM (a, b)

c(Z, t) =
∑
c∈Z

ωC(c) c(Y, Z) =
∑
b∈Y

∑
c∈Z

ωT (b, c)

Notice (T, ωT ) is a subbarcode matching, so by necessity ωC

is greater than the marginals of ωT for each c ∈ C. Similarly,
ωB is greater than the marginals of ωM for each b ∈ B.∑

c∈Z

ωC(c) ≥
∑
c∈Z

∑
b∈B

ωT (b, c)

=
∑
c∈Z

∑
b∈Y

ωT (b, c) +
∑
c∈Z

∑
b∈Y

ωT (b, c)

It follows,

c(Y, Z) + c(Z, t) ≥
∑
y∈Y

∑
c∈C

ωT (b, c) =
∑
b∈Y

ωB(b)

≥
∑
b∈Y

∑
a∈X

ωM (a, b).

Then,

c(X,Y ) + c(Y, Z) + c(Z, t)

≥
∑
a∈X

∑
b∈Y

ωM (a, b) +
∑
a∈X

∑
b∈Y

ωM (a, b)

=
∑
a∈X

ωA(a).

Finally,

c(s,X) + c(X,Y ) + c(Y, Z) + c(Z, t)

≥
∑
a∈X

ωA(a) +
∑
a∈X

ωA(a)

=
∑
a∈A

ωA(a) = |A|.

Thus, c(L,L) ≥ |A| for any cut (L,L) of Net(G). Therefore
A v C. �


