CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Burning Number for the Points in the Plane*

J. Mark Keilt

Abstract

The burning process on a graph G starts with a single
burnt vertex, and at each subsequent step, burns the
neighbors of the currently burnt vertices, as well as one
other unburnt vertex. The burning number of G is the
smallest number of steps required to burn all the ver-
tices of the graph. In this paper, we examine the prob-
lem of computing the burning number in a geometric
setting. The input is a set of points P in the Euclidean
plane. The burning process starts with a single burnt
point of P, and at each subsequent step, burns all the
points that are within a distance of one unit from the
currently burnt points and one other unburnt point of
P. The burning number of P is the smallest number
of steps required to burn all the points of P. We call
this variant point burning. We consider another variant
called anywhere burning, where we are allowed to burn
any point of the plane. We show that point burning and
anywhere burning problems are both NP-complete, but
(2+-¢) approximable for every € > 0. Moreover, if we put
a restriction on the number of burning sources that can
be used, then the anywhere burning problem becomes
NP-hard to approximate within a factor of % —e.

1 Introduction

Graph burning is a discrete process that propagates fire
to burn all the nodes in a graph. In particular, the
fire is initiated at a vertex of the graph and at each
subsequent step, the fire propagates to the neighbors of
the currently burnt vertices and a new unburnt vertex is
chosen to initiate a fire. The vertices where we initiate
fire are called the burning sources. The burning process
continues until all the vertices are burnt. The burning
number of a graph G is the minimum number of steps to
burn all its vertices. Bonato et al. [4] introduced graph
burning as a model of social contagion. The problem is
NP-Complete even for simple graphs such as a spider or
forest of paths [1].

*This work is supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

fDepartment of Computer Science, University of
Saskatchewan, mark.keil@usask.ca

fDepartment of Computer Science, University of Saskatchewan
d.mondal@usask.ca

$Department of Computer Science, University of Saskatchewan
ehsan.moradi@usask.ca

Debajyoti Mondal?

Ehsan Moradi®

I I —~ ~ I / \
- N, A
t I 1 v Visooo /t\
oe oo | [oe"l] oo o o.tl ?0 ‘\‘ oot///pciﬂ
| Lo\) R)
—- — =\ / v\
ce ool e TN A)
t’_f \tZ/ \ /
! ! >3 I - _12 /
: : : ~_
777777777
| | |
| | — |
I I / \ I —
1;1 | ‘/ xl\‘ ﬁL (i] \+ | The unit distance used
\] ' in these two examples.
oo o o : oo\—/o -4 : \Yi a//\\ : !
‘ o)

Figure 1: Illustration for (top) point burning and (bot-
tom) anywhere burning. The burning sources are illus-
trated in labelled dots and cross marks, respectively.

In this paper we introduce burning number for the
points in the plane. We consider two methods for burn-
ing: point burning and anywhere burning. Both prob-
lems take a set of points P as an input, and seek for the
minimum number of steps to burn all points of P.

In the point burning model, we can initiate fire only at
the given points. The burning process starts by burning
one given point, and then at each subsequent step, the
fire propagates to all unburnt points of the plane that
are within one unit of any burnt point of the plane and
a new unburnt given point is chosen to initiate the fire.
Figure 1(top) illustrates this model. Note that we may
not have an unburnt vertex at the last step.

In the anywhere burning model, we can start a fire
anywhere on the plane, and at each subsequent step, the
fire propagates to all unburnt points of the plane that
are within one unit of any burnt point of the plane,
and a new unburnt point is chosen to initiate the fire.
Figure 1(bottom) illustrates this model.

In addition to being a natural generalization of graph
burning, our proposed burning processes may poten-
tially be used to model supply chain systems. A hypo-
thetical example of how a burning process may model
a supply chain management system is as follows. Con-
sider a business that needs to maintain a continuous
supply of perishable goods to a set of P locations. Each
day it can manage to send one large shipment to a hub
location that distributes the goods further to the nearby
locations over time. The point burning considers only
the points of P as potential hubs, whereas anywhere
burning allows to create a hub at any point in the plane.
The burning number indicates the minimum number of
days needed to distribute the goods to all locations. For

34" Canadian Conference on Computational Geometry, 2022

example, in Figure 1(top), the hubs are t1, t3, and t3,
and the business can keep sending the shipments to the
hubs after every three days in the same order.

1.1 Related Results

Finding the graph burning number is NP-Hard [1], but
approximable within a factor of 3 [6]. These results have
been improved very recently. Garcfa-Diaz et al. [10]
have given a (3 — 2/b)-approximation algorithm where
b is the burning number of the input graph. Mondal
et al. [17] have shown the graph burning problem to be
APX-hard, even in a generalized setting where k = O(1)
vertices can be chosen to initiate the fire at each step.
They gave a 3-approximation algorithm for this gener-
alized version [17]. Since the introduction of the graph
burning problem [5], a rich body of literature examines
the upper and lower bound on the graph burning num-
ber for various classes of graphs [20, 14, 8] as well as
the parameterized complexity of computing the burn-
ing number [13]. We refer the reader to [2] for a survey
on graph burning.

Researchers have also explored burning number for
geometric graphs. Gupta et al. [11] examined square
grid graphs and gave a 2-approximation algorithm for
burning square grids. They also showed the burn-
ing number to be NP-Complete for connected interval
graphs. Bonato et al. [3] considered the burning pro-
cess on dynamic graphs, which are growing grids in the
Cartesian plane with the center at the origin. They
explore the proportion or density of burned vertices rel-
ative to the growth speed of the grid. Recently, Evans
and Lin [9] have introduced polygon burning, where
given a polygonal domain and an integer k, the problem
seeks for k vertices such that the polygonal domain is
burned as quickly as possible when burned simultane-
ously and uniformly from those k vertices. They gave a
3-approximation algorithm for polygon burning.

The anywhere burning problem that we introduced
can be seen to be related to the nonuniform version
of the k-center problem. Given a set of points, the
goal of the k-center problem is to find the minimum
radius R and a placement of k disks of radius R to
cover all the given points. In the nonuniform k-center
problem [7], given a set of points and a set of k numbers
ro > ... > rE_1, the goal is to find a minimum dilation
« and a placement of k disks where the ith disk, 1 < i <
k, has radius ar; and all the given points are covered.
If the anywhere burning number of a set of points is
k, then the nonuniform k-center problem with r; = ¢
admits a solution with o = 1.

1.2 Our Contribution

We introduce two discrete-time processes (i.e., point
burning and anywhere burning) to burn the points in

the plane, which naturally extend the graph burning
model to the geometric setting. We prove that in both
models, computing the burning number is NP-hard, and
give polynomial-time (2 + ¢)-approximation algorithms.
We then show that if we put a restriction on the num-
ber of burning sources that can be used, then the any-
where burning problem becomes NP-hard to approxi-
mate within a factor of % — €.

2 Approximating Burning Number

2.1 Point Burning

The burning sources at the ith step are all the vertices
that we choose to initiate the fire from the beginning of
the burning process to the ith step (including the ith
step). We refer to the number of burning sources as B;.
The mazimum burning radius R; at the ith step of the
burning process is the maximum radius over all burn-
ing sources. After the ith step of the burning process,
the maximum burning radius is exactly (¢ — 1) and the
number of burning sources is exactly i (except possi-
bly for the last step). Therefore, if ¢* is the number of
steps in the optimal solution, then the number of burn-
ing sources is at most 0*, and the maximum burning
radius is exactly (6* — 1). Hence for the ith step, we
have the following.

§*>i> B;. (1)

Theorem 1 Given a set P of points in R? and an ¢ >
0, one can compute a point burning sequence for P in
polynomial time such that the length of the sequence is
at most (2 + €) times the point burning number of P.

Proof. Let Gy be a unit disk graph where k/2 equals
one unit, i.e., each vertex of G, corresponds to a disk of
radius k/2 in R?, and there is an edge between two ver-
tices of Gy, if their corresponding disks intersect. Con-
sider the graph G, on P where P represents the centers
of the disks. We denote by Dy a minimum dominating
set of Gy, i.e, the smallest set of vertices such that each
vertex of GGy is either in Dy or a neighbor of a vertex
in Dj. There exists PTAS to approximate Dy, [19], i.e.,
Dy, is approximable within a factor of (1 + &) for every
fixed € > 0.

Let §* be the burning number for P. We now claim
that 6* must be at least |Ds«_1|. Suppose for a con-
tradiction that the burning number is strictly smaller
than |Dg«_1| and let S be the corresponding burning
sources. Since the maximum burning radius over S is
at most (0* — 1), we could use |S| disks, each of ra-
dius (6* — 1) to burn all the points. Hence, we could
choose the disks corresponding to S as a dominating set
for Gg«_1. This contradicts that Dg«_7 is a minimum
dominating set. Hence we have 6* > |Dg«_1].

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

We now iteratively guess the burning number § from
1 to n, where |P| = n. For each 4, we construct Gs_1,
and compute a (1 + ¢) approximation Dj_; for Ds_1.

If |D¢/S—1|
(I+e)
is strictly larger than d, then it violates Equation 1 and

our guess can be increased. We stop as soon as we have

D} . .
‘(11_51)‘ < 4. Since none of the previous guesses were

successful, here we know that §* > 4.

To burn P, we first choose D371 as the burning
sources and burn them in arbitrary order. We then
keep burning another (§ — 1) steps (or, stop early if
all points are burnt). Since all the points are within
the distance (6 — 1) from some point in D5 _,, all the
points will be burnt. Since |Dj_,| < (1+¢)d, and since
6* > 0, the length of the burning sequence we compute
is [D5_|+(0—1) < (14¢e)d*+0*=(24¢)0". O

i.e., the lower bound on the burning sources,

2.2 Anywhere Burning

We leverage the discrete unit disk cover problem to ob-
tain a (2+¢)-approximation for anywhere burning. The
input of a discrete unit disk cover problem is a set of
points P and a set of unit disks 2/ in R?, and the task
is to choose the smallest set U C U that covers all the
points of P. There exists a PTAS for the discrete unit
disk cover problem [18].

We relate the discrete unit disk cover problem to any-
where burning using the observation that there exists an
optimal anywhere burning sequence where each burning
source either coincides with a given point or lies at the
center of some circle determined by two or three given
points. More specifically, consider a burning source ¢
with a burning radius r in an optimal anywhere burn-
ing process. Let S be the set of points burned by ¢. Let
C be the smallest circle that covers all the points of S.
Then we could choose a burning source at the center of
C instead of at ¢ and burn all points of S.

A (1 + ¢)-approximation for anywhere burning prob-
lem can now be obtained by iteratively guessing the any-
where burning number using the same technique as in
Section 2.1 but using an approximation to the discrete
unit set cover problem.

Theorem 2 Given a set P of points in R? and an >0,
one can compute an anywhere burning sequence in poly-
nomial time such that the length of the sequence is at
most (2 + €) times the anywhere burning number of P.

Proof. Let P be the input to the anywhere burning
problem. Note that Equation 1 holds also for anywhere
burning. We now iteratively guess the anywhere burn-
ing number § from 1 to n, where |P| = n. For each ¢,
we construct a set of (g) + (2) disks, where each disk is
of radius ¢ and is centered at the center of a circle deter-
mined by either two or three points of P. We compute

a (1 + ¢)-approximation Uj for the discrete unit disk

cover Us. If %, i.e., the lower bound on the burning
sources, is strictly larger than §, then it violates Equa-

tion 1 and our guess can be increased. We stop as soon

(‘fﬂ) < §. Here we know that §* > 4.

To burn all the points of P, we first choose Uj as
the burning sources and burn them in arbitrary order.
We then keep burning another (§ — 1) steps (or, stop
early if all points are burnt). Since all the points are
within the distance (§ — 1) from some point in Uy, all
the points will be burnt. Since |Us| < (1+4¢)d, and since
6* > 0, the length of the burning sequence we compute
is U]+ (0 —1) < (14€)0*+ 6" = (2+¢)d*. O

as we have

3 NP-hardness

In this section we present the hardness results.

3.1 Point Burning

Consider a decision version of the point burning problem
where given a set of points and an integer b, the task
is to decide whether there is a burning sequence that
burns all the points in at most b steps. This decision
version of the point burning problem is in NP because
given a sequence of burning sources, in polynomial time
one can simulate the burning process to check whether
all the points are burnt. We now consider the hardness.

The graph burning number problem is NP-hard even
for a forest of paths [4]. To prove the NP-hardness of
the point burning one can easily reduce the path for-
est burning problem into the point burning problem as
follows.

Let I be an instance of the path forest burning prob-
lem and let Lq,...,L; be the paths in I. We draw the
vertices of each path L;, 1 < ¢ < t, along the x-axis in
the (left-to-right) order they appear on the path with
unit length distance between consecutive vertices. We
ensure a gap of (2n+1) units between consecutive paths,
where n is the number of vertices in the forest. The
point burning number for the vertices of the paths is at
most n. Since we can only burn the points (equivalently,
vertices) in the point burning model, any point burning
process can be seen as a graph burning and vice versa.
Hence we have the following theorem.

Theorem 3 The point burning problem is NP-
complete.

3.2 Anywhere Burning

Similar to point burning, the decision version of the
anywhere burning problem is in NP because given a se-
quence of burning sources, in polynomial time one can
simulate the burning process to check whether all the
points are burnt.

34" Canadian Conference on Computational Geometry, 2022

7 ooooooao DDDUDUD
v3 Ca V4 Ennnnun Ca ooooo E
o ol vy 5y g
o o o o
U3 V4 '3_' oo oo
° e X
q
o oo
‘1 a —‘ 4 laooo a8
$0 o o
V2 Cc3 a
v2 €3 E U2 soooool ©
o o
U1 Us o o o o
C2 o o oo
t, o o oo
t o o oo
o vsO o
v s vs ¢, [FoBEOE @
oooooo®
bump
(a) (b) (c)
LR SR &y o d gy
c (P c
G o O e P
U4®© ’U4® (:)
. @’g ©©©
bump 2 @@
5 @
N=A=24 37
C3 Cc3

() (f)

Figure 2: Illustration for the construction of the point set P.

To show the hardness we can use almost the same
hardness reduction that we used for point burning. Let
I be an instance of the path forest burning problem and
let P be the corresponding point set we constructed in
Section 3.1. If the burning number for I is b, then we
can simulate the same burning process to burn all points
of P in b steps. If P admits an anywhere burning within
b steps, then for each burning source ¢, we choose the
nearest point ¢’ of P as the burning source. By the
construction of P, the distance between ¢ and ¢’ is at
most 0.5. Since the burning radius of ¢ is an integer, a
burning source with the same radius at ¢’ will burn the
same set of points as that of g. Therefore, if we now burn
the chosen points of P in the order corresponding to
the anywhere burning sequence, this simulates a graph
burning process on I and burns all the vertices within
b steps. We thus have the following theorem.

Theorem 4 The anywhere burning problem is NP-
complete.

Hardness of Approximation with Bounded

Burning Sources: If we put a restriction on the num-
ber of burning sources that can be used, then we can
modify the above hardness proof to derive an inapprox-
imability result on the number of burning steps.

To show the hardness of approximation, we first give
a different NP-hardness proof for anywhere burning.
Here we reduce the NP-hard problem planar exactly
3-bounded 3-SAT [16]. The input of the problem is
a 3-CNF formula where each variable appears in ex-
actly 3 clauses, each clause contains at least two and at
most three literals, and the corresponding SAT graph (a
graph with clauses and variables as vertices, and clause-
variable incidences as edges) is planar. The task is to
decide whether there exists a truth value assignment for
the variables that satisfies all the clauses.

Let I be an instance of the planar exactly 3-bounded
3-SAT and let G be the corresponding SAT graph. We
now show how to compute a point set P and an integer
b such that P can be burned within b steps if and only
if I admits an affirmative solution. Our construction is
inspired by an NP-hardness reduction for the k-center

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

problem [15], but contains nontrivial details due to vari-
able sizes for the burning radii. We will use the concept
of B-disk, which is a disk of radius £.

We first compute an orthogonal planar drawing D
of G where the vertices are represented as grid points
and edges as orthogonal polylines (Figure 2(a)). Every
planar graph with maximum degree three has such an
orthogonal planar grid drawing inside a square of side
length |n/2] [12]. We then scale up the drawing and
replace the vertices with squares and edges with parallel
orthogonal lines (Figure 2(b)). We will refer to this new
representation for an edge as a tunnel. We ensure that
each square is of side length 7 units and the pair of
parallel line segments of a tunnel are 3 units apart. We
then replace the square for each variable by joining the
tunnels incident to it (Figure 2(c)).

Creating Points for Variables and Clauses: We
now add some points along the boundary of the tunnels
as follows. Let L be a polygonal line (determining a
side of the tunnel) from a clause to another clause (e.g.,
the orange line Figure 2(c)). We place points from both
ends such that no three points can be covered by a 1.10-
disk. The first point is placed at one unit distance from
the boundary of the square representing the clause, and
then each subsequent point is placed two units apart
from the previous one. If the two sequences of points
from the two ends of L meet at a common point (e.g.,
the point ¢ in Figure 2(c)), then nothing else needs to be
done. If the two sequences does not meet at a common
point and a bend point is available, then we create a new
point instead of creating two points that are one unit
apart (e.g., the point s in Figure 2(c)). This ensures
the property that no three points can be covered by a
1.10-disk. Note that instead of modifying a bend, one
can also create a ‘bump’ on L to ensure this property,
as illustrated with the points ¢,¢ in Figure 2(c).

For each square representing a clause, we add 2 points
for each variable incident to it and an additional 4 points
qo,q1, 492,93, as illustrated in Figure 2(d). We refer
to the points qo, q1,q2,qs as the clause points. Some
black unit disks are drawn to illustrate the configura-
tion of these points. The key property here is that no
1.10-disk can cover all clause points, but if we exclude
one clause point among {q1, g2, g3}, then the remaining
clause points can be covered using a unit disk.

Note that each variable now corresponds to a se-
quence of points forming a loop. We create some more
bumps to ensure that each variable contains an even
number of points. This allows us to have two ways
of covering the loop by using only unit disks by tak-
ing alternating pairs, as illustrated in Figures 2(e)—(f).
Later, we will relate such covering to burning and if both
variable-loop points inside the clause gadget are covered
by the same unit disk, then will set that literal to true.
Therefore, we add some more points to ensure consis-

tency. For example, assume that in Figures 2(e)—(f), the
clauses ¢4 and c3 contain the literals vz and vy, respec-
tively. We create a bump so that if both variable-loop
points inside the gadget of ¢4 are covered by a single
unit disk, then the two variable-loop points inside the
gadget of c3 will be covered by two different unit disks,
and vice versa.

Since the width and height of the drawing is of size
O(n), the total number of points is O(n?). We will
denote by N, and N, the points that we created for the
variables and clauses, respectively.

Creating Points to Accommodate Burning
Process: We now scale up the drawing by r units,

where we set r to be 10 (% + %) Let the resulting

drawing be D’. Consequently, all the above covering
properties for unit disks and 1.10-disks now hold for
r-disks and 1.10r-disks, respectively.

We now create r points w;, where 1 < ¢ < r, along a
horizontal line such that each point is far from the rest
of the points by at least 3r units.

We will refer to the points created in this step as the
outlier points and denote them by N;. Note that the
points of N; lie outside of D’.

From 3-SAT to Burning Number: We now show
that if the 3-SAT instance I admits an affirmative solu-
tion, then the point set (N, U N. U N;) can be burned
in 1.107 steps.

In the first 0.10r steps we initiate 0.10r burning
sources inside D’ and then initiate r burning sources
at the outlier points. After this, the minimum radius of
the burned area for any burning source started within
D’ is at least 7 and the maximum radius for such sources
is (1.10r —1). The burning sources inside D’ can be seen
as (-disks where g € [r, 1.107].

For each true literal, we cover the corresponding two
variable points and the nearest clause point by initi-
ating a single burning source (e.g., Figures 3(a)—(c)).
We then burn the variable loops by initiating burning
sources for alternating pairs of points. This takes |N,|/2
burning sources. Since all clauses are satisfied, for each
clause, at least one of the clause points from {q1, g2, ¢3}
will be allocated to burn along with a pair of variable-
loop points. Therefore, each clause now requires one
burning source to ensure the burning of all its clause
points. Hence the total number of burning sources we

use within D’ is 0.10r = % + UX—Cl . The set N; con-

tains r points where no two of them can be covered by
a 1.10r-disk. It is straightforward to burn them in r
steps. Therefore, the total number of steps required is
1.10r.

From Burning Number to 3-SAT: We now show
that if the point set (N,UN.UN;) can be burned in 1.10r
steps, then the 3-SAT instance I admits an affirmative
solution.

Since the set N; contains r points where no two of

34" Canadian Conference on Computational Geometry, 2022

@
O

RIS
0.00 4
6 O b

S
)
O

SR

RS

O ©
.

o

o
AN,

OO

Figure 3: Illustration for the reduction.
x3 = False. (¢) 1 = True, xo = True, x3 =

them can be covered by a 1.10r-disk, any burning se-
quence would need r burning sources outside of D’.

Since there are at most 1.107 steps to burn all the points,
‘N’U‘ _|_ |N |

ing sources inside D’. Note that none of these burning
sources can have a radius larger than (1.10r —1). By the
construction of the variable-loop points, no three points
can be covered by a 1.10r-disk. Therefore, the variable-
loop requires at least |N,|/2 burning sources. If none of
q1,q2, q3 are burned along with the variable-loop points,
then a clause gadget requires two burning sources (e.g.,
Figures 3(d)). Otherwise, each clause gadgets requires
at least one burning source to ensure all clause points
are burned even if q1,qs,q3 are all burned along with

the variable-loop points (e.g., Figures 3(a)). Since there
\N |

we are left with at most 0.10r =) burn-

are clause gadgets and exactly that many burning
sources remaining, each clause gadget will have exactly
one from the remaining burning sources. Since a 1.107-
disk cannot cover all four clause points of a clause gad-
get, one of them must be burned together with a pair
of variable-loop points. We set the corresponding literal
to true. The construction of the variable-loop ensures
the consistency of the truth value assignment for each
variable at different clauses.

Inapproximability Factor (with Bounded
Burning Sources): Assume that we are only allowed

to initiate (% + “\%l) + |Ny| fires. We change r to

(a) 1 = True, xo = False, x3 = True.
False. (d) 1 = False, z9

(b) 1 = False, xo = False,
= True, x3 = False.

be 10° (% + “Z“l), where ¢ is a constant. We now

can burn (N, U N, U N;) in (1 + 1079
Op = (% + %) burning sources inside
D' and then r burning sources to burn the points in N;.
Since our reduction can be carried out with 1.107-disks,
we can continue burning for (1.10r — (1 + 107%)r)

more steps. Therefore, we obtain an inapproximability
factor of e., (1.10 — €), where ¢ can be made

)r steps by first
initiating 10~

10 .
(1+10 5y 1
arbitrarily small by choosing a large value for 4.

\ /
\ /
| /
wl @ !

Figure 4: Hlustration for the modified clause gadget.

Although for simplicity we used an orthogonal set-
ting where variable loops enter a clause gadget either
horizontally or vertically, we could slightly change the
construction using curves (similar to [15]) such that they
make 120° angles at the clause gadget (Figure 4). This

CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

allows us to carry out the reduction using a %—disks

and thus to have an inapproximability factor of % —e.

Corollary 5 The anywhere burning problem with a re-
striction on the number of burning sources that can be
used is NP-hard to approximate with a factor of % —¢,

for every fized € > 0.

4 Conclusion

In this paper, we introduced two burning processes —
point burning and anywhere burning — to burn a set
of points in the Euclidean plane. We proved that com-
puting the burning number for these processes are NP-
complete and gave approximation algorithms for them.
We showed that inapproximability results can be de-
rived for anywhere burning if only a restricted number of
burning sources are allowed. Hence a natural future re-
search direction to explore is to design efficient approx-
imation algorithms for computing the burning number
as well as to establish better inapproximability results.

References

[1] S. Bessy, A. Bonato, J. C. M. Janssen, D. Rautenbach,
and E. Roshanbin. Burning a graph is hard. Discret.
Appl. Math., 232:73-87, 2017.

[2] A. Bonato. A survey of graph burning. Contributions
Discret. Math., 16(1):185-197, 2021.

[3] A. Bonato, K. Gunderson, and A. Shaw. Burning the
plane. Graphs Comb., 36(5):1311-1335, 2020.

[4] A. Bonato, J. C. M. Janssen, and E. Roshanbin. Burn-
ing a graph as a model of social contagion. In A. Bon-
ato, F. C. Graham, and P. Pralat, editors, Algorithms
and Models for the Web Graph (WAW), volume 8882 of
LNCS, pages 13-22. Springer, 2014.

[5] A. Bonato, J. C. M. Janssen, and E. Roshanbin. How
to burn a graph. Internet Mathematics, 12(1-2):85-100,
2016.

[6] A. Bonato and S. Kamali. Approximation algorithms
for graph burning. In International Conference on The-
ory and Applications of Models of Computation, pages
74-92. Springer, 2019.

[7] D. Chakrabarty, P. Goyal, and R. Krishnaswamy. The
non-uniform k-center problem. In I. Chatzigiannakis,
M. Mitzenmacher, Y. Rabani, and D. Sangiorgi, ed-
itors, Proc. of the 43rd International Colloguium on
Automata, Languages, and Programming (ICALP), vol-
ume 55 of LIPIcs, pages 67:1-67:15, 2016.

[8] S. Das, S. R. Dev, A. Sadhukhan, U. kant Sahoo,
and S. Sen. Burning spiders. In Conference on Algo-
rithms and Discrete Applied Mathematics, pages 155—
163. Springer, 2018.

[9] W. Evans and R. Lin. The polygon burning prob-
lem. In International Conference and Workshops on
Algorithms and Computation, LNCS, pages 123-134.
Springer, 2022.

[10] J. Garcia-Diaz, J. C. P. Sansalvador, L. M. Rodriguez-
Henriquez, and J. A. Cornejo-Acosta. Burning graphs
through farthest-first traversal. IEEE Access, 10:30395—
30404, 2022.

[11] A. T. Gupta, S. A. Lokhande, and K. Mondal. Burn-
ing grids and intervals. In A. Mudgal and C. R. Sub-
ramanian, editors, Proc. of the 7th International Con-
ference on Algorithms and Discrete Applied Mathemat-
ics (CALDAM), volume 12601 of LNCS, pages 66-79.
Springer, 2021.

[12] G. Kant. Drawing planar graphs using the canonical
ordering. Algorithmica, 16(1):4-32, 1996.

[13] Y. Kobayashi and Y. Otachi. Parameterized complexity
of graph burning. In Y. Cao and M. Pilipczuk, editors,
Proc. of the 15th International Symposium on Parame-
terized and Ezact Computation (IPEC), volume 180 of
LIPIcs, pages 21:1-21:10. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2020.

[14] H. Liu, X. Hu, and X. Hu. Burning numbers of path
forests and spiders. Bulletin of the Malaysian Mathe-
matical Sciences Society, 44(2):661-681, 2021.

[15] N. Megiddo and K. J. Supowit. On the complexity of
some common geometric location problems. STAM J.
Comput., 13(1):182-196, 1984.

[16] M. Middendorf and F. Pfeiffer. On the complexity of
the disjoint paths problems. Comb., 13(1):97-107, 1993.

[17] D. Mondal, N. Parthiban, V. Kavitha, and I. Ra-
jasingh. Apx-hardness and approximation for the k-
burning number problem. In R. Uehara, S. Hong, and
S. C. Nandy, editors, Proc. of the 15th International
Conference and Workshops on Algorithms and Com-
putation (WALCOM), volume 12635 of LNCS, pages
272-283. Springer, 2021.

[18] N. H. Mustafa and S. Ray. Improved results on geo-
metric hitting set problems. Discret. Comput. Geom.,
44(4):883-895, 2010.

[19] T. Nieberg and J. L. Hurink. A PTAS for the mini-
mum dominating set problem in unit disk graphs. In
T. Erlebach and G. Persiano, editors, Proc. of Approz-
imation and Online Algorithms (WAOA), volume 3879
of LNCS, pages 296-306. Springer, 2005.

[20] K. Sim, T. S. Tan, and K. Wong. On the burning
number of generalized petersen graphs. Bulletin of the
Malaysian Mathematical Sciences Society, 41, 11 2017.

