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Maximum Weight Convex Polytope

Mohammad Ali Abam*

Abstract

We study the maximum weight convex polytope prob-
lem, in which the goal is to find a convex polytope max-
imizing the total weight of enclosed points. Prior to
this work, the only known result for this problem was
an O(n3) algorithm for the case of 2 dimensions due
to Bautista et al. We show that the problem becomes
NP-hard to solve exactly in 3 dimensions, and NP-
hard to approximate within n'/2=¢ for any ¢ > 0 in 4
or more dimensions. We also give a new algorithm for
2 dimensions, albeit with the same O(n?) running time
complexity as that of the algorithm of Bautsita et al.

1 Introduction

Suppose you are given a set of n points S in R? with
weights w : S — R; note that weights can be positive
or negative. The weight of a polytope P is defined as
w(P) =3 csnp w(x). In the mazimum weight convex
polytope problem, or MW CP for short, the goal is to
find a convex polytope of maximum weight. This is a
rather natural and fundamental computational geome-
try question.

MWCP with a binary weight function, such as w :
S — {+1,—1}, belongs to a large class of computa-
tional geometry problems on bichromatic point sets with
weights {41, —1} corresponding to two colors, typically
“red” and “blue”. For example, in the maximum box
problem one is given a set of r red points and a set of
b blue points in the plane and the goal is to find an
axis-aligned rectangle which maximizes the number of
blue points and does not contain any red points. Liu
and Nediak [10] gave an exact O(rlogr + r + b*logb)
algorithm, and Eckstein et al. [5] construct an efficient
branch-and-bound algorithm motivated by a problem
in data analysis. Liu and Nediak [10] also show how to
solve efficiently a related bichromatic separability with
two boxes problem, introduced by Cortés et al. [2].

MWCP is also related to bichromatic discrepancy
problems, where one is given two finite sets of points S
and S~ in R?, and the goal is to find an axis aligned par-
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allelepiped (also called a box) B maximizing the differ-
ence between the number of the points of ST and S~ in-
side the box, i.e. ||[BNST|—|BNS~||. Let n = |STUS™|
denote the total number of points. Dobkin et al. [4]
solved this problem in R? in O(n?logn) time. Liu and
Nediak [10] presented a 2-factor approximation for this
problem in R? with O(nlog®n) running time.

In another related problem, namely, numerical dis-
crepancy problem, one is given a set of n points S C
[0,1]2. The goal is to find a box B that maximizes the
numerical discrepancy of B defined as ||B N S|/|S| —
w(B)|, where u(B) denotes the area of B. Observe that
the numerical discrepancy of B can be thought of as
measuring the deviation of the empirical distribution
from the uniform distribution. Dobkin et al. [4] solved
this problem in R? in O(n?log® n) time. Liu and Nediak
[10] presented a 2-factor approximation for this problem
in R? with O(nlog® n) running time.

The above problems introduce constraints on the
shape of the solution, namely that the convex polygon
must be an axis-aligned parallelepiped. In another vari-
ation studied by Gonzdlez-Aguilar et al. [7] the geo-
metric shape of the solution is restricted to be a rec-
tilinear convex hull of points (note that the rectilinear
convex hull is not necessarily a convex subset of R?).
Gonzalez-Aguilar et al. [7] gave an O(n?) algorithm for
this problem.

We note that the above problems are very similar
to our problem at first glance. A deeper investigation
shows that the nature of restriction on the solution set is
crucial for the above problems and algorithms for them,
and so new ideas and techniques are needed for MW C P
problem. There is one other problem that is directly rel-
evant to MW CP, and that is the optimal islands prob-
lem studied by Bautista et al. [1]. In this problem, one
is given a set S of n points colored with 2 colors in the
plane. A subset Z € S is called an island of S, if 7 is
an intersection of S and a convex set C'. Bautista et al.
[1] gave an O(n®)-time algorithm to find a monochro-
matic island of maximum cardinality. Their algorithm
can also be used to solve the MW CP problem in 2 di-
mensions.

The class of problems to which MW C P belongs have
important practical applications in data analysis and
machine learning. In particular, Bautista et al. [1] were
motivated by clustering applications. Given a training
dataset of points S C R¢ that are labelled with two col-
ors “red” and “blue”, in a classification problem one is
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interested in a simple description of a region of space
corresponding to the class of “red” points, for example.
One possibility is to use convex hulls for such a descrip-
tion (see, for example, Kudo et al. [9]). If dataset is
2-dimensional one arrives naturally at the optimal is-
lands problem. However, datasets are often noisy, so
one should not expect to see large monochromatic is-
lands, so perhaps weighted version of the problem, such
as MW CP, might be more suitable. A bigger issue is
that in classification problems datasets are often high di-
mensional and one cannot always hope to obtain clusters
by projecting to 2 dimensions first. Thus, for clustering
applications it is important to be able to solve MW CP
efficiently in high dimensions. This is the question we
tackle in this paper. Alas, we show that MWCP is
NP-hard in 3 dimensions (Theorem 8), and that it is
N'P-hard to approximate within n'/2=¢ for any € > 0 in
4 dimensions even with binary weights (Theorem 11).
We also give a completely new algorithm for 2 dimen-
sions with running time O(n?®) matching Bautista et al.

2 Preliminaries

Whenever we write “polytope” in this paper we mean
a convex polytope. S denotes the input set of n points
in R? for d > 1 and a weight function is denoted by
w : S — R. The weight of a polytope P, denoted by
w(P), is defined as follows:

veESNP

In MW C P problem, the goal is to find a polytope with
maximum weight. Note that points v € S with 0-weight
do not affect weight of any polytope, and so they can be
removed from the input in a preprocessing step. Hence-
forth, we assume that for all v € S we have w(v) # 0.
We use S~ and S™ for the subsets of points of S with
negative and positive weights respectively. For a set
of points C C R? we let conv(C) denote the convex
hull of C. With a slight abuse of notation, we define
w(C) = w(conv(C)). A subset C C ST is mazimal if
for every v € C, w(C) > w(C \ {v}).

Recall that a polytope has two standard equivalent
descriptions: V-polytope is described as a convex hull
of vertices, and H-polytope is described as an intersec-
tion of half-spaces. We shall primarily work with V-
polytopes due to the nature of MW CP problem. We
let vert(P) denote the set of vertices of a polytope P.
Vertices of a polytope are also its 0-faces and edges of a
polytope are its 1-faces. We state a few facts about poly-
topes here that will be used later in the paper; for a more
thorough introduction to polytope theory, the reader is
referred to the excellent lecture notes of Ziegler [11].

Fact 1 (V-polytope definition) Let P C R? be a
polytope and v € R? be a point. v € P if and only
if there is a convex combination of vert(P) equal to v.

Fact 2 Let P C R? be a polytope and F be a face of P.
The face F is a polytope, with vert(F) = F Nvert(P).

Let P C R be a polytope and F be a face of P. For a
hyperplane h such that ' C h we define h~ and h™ to be
the open half spaces bounded by & such that A~ NP = (.

A polytope P € R? is a polytope embedding of a graph
G(V, E) if there exist a one-to-one function f : V. —
vert(P) such that if (u,v) € E then (f(v), f(u)) is an
edge of P. Note that P may have some extra edges
compared to G. If P has exactly |F| edges, then we call
this embedding a polytope realization of G.

3 Results

In this section we present our results for the MW CP
problem beginning with an overview of upper bounds
in Section 3.1 (where we present a new algorithm for
2 dimensions), followed by lower bounds for 3 and 4
dimensions in Section 3.2.

3.1 Upper bounds for 1 and 2 dimensions

We begin with a simple observation: we can assume
without loss of generality that vertices of a maximum
weight polytope are elements of S*.

Lemma 3 For every set S of points in R%, there exists
a mazimum weight polytope P with vert(P) C S+.

Proof. Let P be a maximum weight polytope and de-
fine C = St N P. The convex hull conv(C) is a sub-
set of P that has all the positive points of P. Thus,
w(C) > w(P). Since vert(conv(C)) C S, we have
that conv(C') satisfies the conditions of the lemma. O

The above lemma implies that to solve MWCP it is
sufficient to find a set C C ST with maximum weight of
its convex hall. In particular, when d = 1 the MW CP
problem reduces to the maximum subarray problem
(consider the array of weights of points in S in increas-
ing order of their x-coordinates). The following result
is immediate from well known algorithms for the maxi-
mum subarray problems.

Theorem 4 The MW CP problem in 1 dimension (d =
1) is solvable in O(nlogn) time. Moreover, if input
points are sorted the problem is solvable in O(n) time.

Bautista et al. [1] gave a dynamic programming algo-
rithm that solves the MW CP problem in 2 dimensions
in O(n3) time. Their algorithm is based on a trian-
gulation of a convex polytope from a topmost anchor
vertex.
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Theorem 5 (Bautista et al. [1]) The MWCP
problem is solvable in O(n®) time in 2 dimensions

(d=2).

In the rest of this section we present a new algorithm
which solves MW CP problem in 2 dimensions, albeit
with the same O(n3) running time. Our algorithm is
based on a different decomposition (see Figure 1), and
is arguably simpler than the algorithm of Bautista et al.

Figure 1: Two decompositions of a polytope which form
a basis of two dynamic programming approaches. In the
approach of Bautista et al. (shown on the left) a poly-
tope is decomposed via a triangulation from an anchor
(topmost) vertex. In our approach (shown on the right)
a polytope is decomposed into two paths from a left-
most to a rightmost vertex: top concave path (shown
solid) and bottom convex path (shown dashed).

Without loss of generality we can assume that no two
points of S have the same z-coordinates. Otherwise in
O(n?) we can find line £ such that is not parallel to any
line passing through two point in S. Then we can rotate
the axes so that the y-axis becomes parallel to /.

Let p1,...,pn be the points in S sorted from left to
right by their z-coordinates. Consider a directed edge
from p; to p; for every i < j. Weight of the edge p; — p;,
denoted by w(p;,p;), is the sum of all the weights of
points py such that ¢ < k < j and py is below the line
segment joining p; and p;. We can use brute-force algo-
rithm to compute w(p;, p;) for all i < j in O(n?) time.
Thus, we assume that all these weights have been pre-
computed and are available to us when we need them.
A path is a sequence of connected edges. For a path P
we define its weight, denoted by w(P), to be the sum of
the weights of its edges and its vertices. For a path P
we define its sub-weight, denoted by w™(P), to be the
sum of the weights of its edges only.

A polygon P can be represented as a concave path C
and a convex path V between its leftmost and its right-
most vertices (see Figure 1). Thus the weight of P is
equal w(C) — w~ (V). We shall present a dynamic pro-
gramming algorithm to solve the optimization version of
the problem, where we are interested in computing the
weight of a maximum weight polygon only. The algo-
rithm can be easily modified to find a maximum weight
polygon itself by the standard technique of remember-
ing which choices resulted in individual entries of the
dynamic programming tables.

For every i < j < k, let C[i,j,k] (respectively
Vi, j, k]) be the maximum (respectively, minimum)
weight (respectively, sub-weight) of a concave (respec-
tively, convex) path from p; to px such that the first
edge is p; — p;. We denote the maximum weight of a
polygon with leftmost vertex p; and rightmost vertex pg
by M[i,k]. If i = k then M[i, k] = w(py), and if i < k
then MT[i, k] can be computed as:

M, k] = max C[i,j,k] — min V[i,j,kl.
The solution to the overall problem is then given by the
max;<x M][i, k].

In the remainder, we explain how the table C[i, j, k]
can be computed. The table Vi, j, k] is computed anal-
ogously with some trivial modifications (such as exclud-
ing contribution of vertices of the path, replacing con-
cavity with convexity, and replacing maximization ob-
jective with minimization objective).

In the algorithm, we have to check whether a line
segment joining vertices p and ¢ can be extended to a
vertex r with p.x < g.x < r.x while maintaining concav-
ity. This can be tested by checking whether the vector
r —p is turned clockwise relative to the vector ¢ —p (see
Figure 2). In turn, this can be achieved by checking
the sign of 2-dimensional cross-product, denoted by X,
and defined as vy X9 v9 = V1.7 - V2.y — v1.y - v2.x. To
summarize we have that the path p — ¢ — r is concave
if and only if*(r — p) x2 (¢ — p) > 0.

q r
q—p
r—=p

p
Figure 2: The path p — g — r is concave if and only if
vector r — p is turned clockwise relative to vector ¢ — p.

Base cases for the table C[i, j, k] are the following:
Cli,j, k] = —0 ifi<j<k
and (px — pi) X2 (p; —pi) <0

It is clear that the other entries C[i, j, k] with i < j <
k can be computed according to the following formula:

Cli, j, k] = max{w(pi, p;) + w(pi) + Clj, ", k] = (1)

Jj<j <kand (pj —p;) %2 (p; —pi) > 0}.

LA bit of care is needed to handle inputs that are not in gen-
eral position. If three points p,q,r with p.x < gq.x < r.z are
collinear then (r — p) X2 (¢ — p) = 0, and the path p, ¢, r should
be considered concave. However, this makes g not a vertex of the
resulting polytope, as it appears in the middle of an edge. In our
description, we tacitly assumed that points are in general position
to simplify the presentation. It is easy to extend our algorithm to
handle points not in general position.
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A naive computation of the above table takes O(n?)
time, since the table has O(n?) entries and each entry
can be computed in O(n) time. Next, we show a trick
of how the time complexity can be reduced to O(n?).
The idea is for a fixed j and k to fill in entries C[i, j, k|
for all ¢ in O(n) time.

We precompute in O(n?logn) total time for all j
two lists: Lj = (ll, ey lj—l) and Rj = (1"1, ey Tn—j)-
L; (R;) consists of points {pi,...,pj—1} (respectively,
{pj+1,--.,pn}) to the left (respectively, to the right) of
p; and sorted in clockwise order with respect to p; as
the origin.

Now, fix a pair of indices j < k. In O(n) time it
is easy to compute D[j’, k] = max;»{Clj, ;" k] : 7/ <
k and pj» is either p;, or appears after p; in R;}. De-
fine the first compatible j’ for the given 1,7, denoted
by fc(i,j), as the first p;; appearing in R; such that
p; — p; — p;s is concave. Then it is clear that C[i, j, k]
can be equivalently restated as follows:

C[i’j7 k] = w(pi,pj) + w(p%) + D[fc(Z’])JC]

This is because, every p;» that appears after fc(4,j) in
R; also forms a concave path p; — p; — p;». Thus, the
third term D|[fc(i, ), k] in the above equation is exactly
the same as the third term in Equation (1).

Lastly, it is left to observe that as one considers points
p; in the order in which they appear in L;, the cor-
responding sequence of fc(i,j) also forms an increas-
ing sequence in R;. Thus, by maintaining a running
pointer into R; one can compute fc(4,7) in O(n) time
for all p; € L;. This finishes the description of the algo-
rithm. One readily checks that all precomputing steps
take O(n3), base cases of C[i, j, k] can also be computed
in O(n?®) time, and all other entries can be computed in
O(n?) as well, by iterating over all pairs j < k and filling
in C[i, j, k] for all ¢ in O(n) time.

3.2 Lower bounds for 3 and 4 dimensions

Recall that a strict reduction from an optimization prob-
lem A to an optimization problem B is a pair of func-
tions (f, g), where f maps instances x of A to instances
f(z) of B and g maps solutions y of B to solutions g(y)
of A, such that the approximation ratio achieved by so-
lution y on instance f(z) of B is at least as good as
the approximation ratio achieved by solution g(y) on
instance x of A. All our lower bound results in this
section are based on the following technical lemma.

Lemma 6 Let G be a graph family. If for every G € G
a polytope embedding of G into R® can be found in poly-
nomial time and bit complexity polynomial in n, then
there is a strict reduction from the mazimum indepen-
dent set on G to MW CP in d dimensions with weights
{+1,-1}.

Proof. Given input instance G = (V, E) to the maxi-
mum independent set on G, we let P be the result of ap-
plying the polytope embedding to G. Let ST := vert(P)
and assign +1 weight to every vertex in S*. Create set
S~ by adding two points with weights of —1 at two ar-
bitrary positions of every graph edge. Let S = STUS™.
For a negative point v € S, let p1(v),p2(v) € ST be
positive-weighted vertices such that v was placed on the
edge joining p; (v) with pa(v) and n(v) be the other neg-
ative point on that edge. See Figure 3 for an example.

We claim that for a subset C' C ST, there exist a nega-
tive point v € S~ in conv(C) if and only if p; (v), p2(v) €
C'. One direction is clear: if p1(v),pa(v) € C then by
Fact 1 n(v) and v are in conv(C). For the other di-
rection, assume that v € conv(C). Let e be the edge
between p;(v) and p(v). By the definition of P, there
exist a hyperplane h. such that STNh_ = (). Therefore
Cnh; =0 and F := conv(C)Nh, is a face of conv(C').
F # () since v is in h, and conv(C). Only vertices
of St in h, are {p1(v),p2(v)}. By Fact 2 vert(F) =
F nwert(conv(C)) C he N ST = {p1(v),p2(v)}. With-
out loss of generality suppose vert(F) = {pi(v)}, this
implies v ¢ F' which is a contradiction. Thus vert(F') =
{p1(v),p2(v)} and p1(v),pa(v) € C.

Let ¢ C ST be a maximal subset. We claim
that conv(C') contains no negative points and all pos-
itive points in conv(C) are precisely the vertices of
conv(C). First, suppose there exists a negative point
v € conw(C) thus p1(v),p2(v) € C and n(v) €
conv(C). w(C\{p1(v)}) > w(C)+2—-1> w(C) since
v,n(v),p1(v) ¢ conv(C\{v;}). This is a contradiction
to maximality of C'. Second, suppose there exist a pos-
itive point v € S in conv(C) \ vert(conv(C)). Because
v is a vertex of P there exist a hyperplane h,, such that
ST Nh, =0. Therefore C Nh, =0 and v is a vertex
of conv(C') which is a contradiction.

Therefore, we can conclude that w(C) = |C| if C C
ST is maximal. Next, we prove there exists a maximal
subset C C ST if and only if there exist an independent
set Z C V such that w(C) = |Z|.

If: Let Z C V be an independent set and C C ST be
the set of corresponding vertices of Z in ST. Because
there is no edge between vertices in Z, there is no graph
edge between vertices in C. Thus there are no negative
points in conv(C). Since all vertices inside conv(C') are
positive, C' is a maximal subset and w(C) = |C| = |Z|.

Only if: Let C C ST be a maximal subset and let
T C V be the set of corresponding vertices of C' in G.
Because C' is a maximal subset, there is no negative
point in conv(C'), and there is no graph edge between
vertices of C'. Thus the set of corresponding vertices
of C' in G is an independent set. |Z| = w(C) since
w(C) =|C].

Without loss of generality we can suppose every ap-
proximation algorithm for MWCP outputs a maxi-
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mal subset of ST. Thus there exist a strict reduction
from the maximum independent set problem of graph
G(V,E) to MWCP in R O

pi(v)

Figure 3: A graph and its embedding in R?. Black
points and edges are the graph and blue points and
edges are the embedding of the graph. Red points are
added negative points. And an example of v, n(v),
p1(v), and ps(v) is shown.

We obtain the lower bound for 3 dimensions by apply-
ing Lemma 6 to the class G of planar graphs. We note
that the maximum independent set problem is N"P-hard
even for planar graphs [6]. Our lower bound relies on
the polynomial embedding in 3 dimensions due to Das
et al. [3]. A maximal planar graph is a planar graph such
that an addition of any new edge results in a non-planar
graph.

Lemma 7 (Das et al. [3]) Given a mazimal planar
graph G(V, E) with n vertices, a polytope realization of
G in R3 can be found in O(n) time and with bit com-
plexity polynomial in n.

Thus the following theorem can be easily deduced
from Lemmas 7 and 6.

Theorem 8 Let S be a set of n points in R? with weight
function w, finding MWCP of S is N'P-hard even if
w:S— {-1,+1}.

Proof. Let G be the family of all planar graphs. By
adding edges to a planar graph G we can make it maxi-
mal. The polytope realization of the new maximal pla-
nar graph is also a polytope embedding of G. Thus with
Lemma 7 we can conclude for every G € G a polytope
embedding of G in R? can be found in polynomial time
and with polynomial bit complexity. By Lemma 6, there
is a strict reduction from maximum independent set on
planar graphs to MW C'P with weights {41, —1}, hence
it is an AN'P-hard problem. O

Let S be the set of points (i,42,4%,i%) for 1 <i < mnin
R*. The convex hull of S is known as the cyclic polytope

on n vertices in R* and it is a polytope realization of
a complete graph with n vertices (for more details, see,
for example, [11]).

Lemma 9 Given a complete graph K, with n vertices,
a polytope realization of it in R* can be found in O(n)
time with a bit complexity polynomial in n.

We can use Lemma 9 to show that MWCP in 4
dimensions is as hard as independent set on arbitrary
graphs. Zuckerman [12], strengthening an earlier result
of Hastad [8], showed that it is AN"P-hard to approxi-
mate independent set on arbitrary graphs within n!~¢
factor for any € > 0.

Theorem 10 (Zuckerman [12]) For any e > 0 it is
NP-hard to approrimate mazimum independent set to
within n'~¢.

Combining the above ingredients we establish the in-
approximability of MW CP in 4 dimensions and higher.

Theorem 11 For any € > 0 it is N'P-hard to approzi-
mate MW CP in 4 dimensions (or higher) with weights
{+1, -1} to within n'/?~¢.

Proof. Let G be the family of all finite graphs. By
Lemma 9 for every G € G a polytope embedding of G
in polynomial time and with polynomial bit complexity
can be found (recall that the embedding is allowed to
have extra edges compared to G). By Lemma 6, there
is a strict reduction from maximum independent set
on general graphs to MWCP with weights {+1,—1}.
Since Theorem 10 is expressed in terms of input size, it
is left to observe that the reduction of Lemma 6 pro-
duces instances of MW CP with the number of points
that is at most quadratic in the number of vertices of
the input graph. O

4 Conclusion and Discussion

In this work, we extended our understanding of the com-
plexity of MW CP as a function of the ambient dimen-
sion d. Based on our work and previous work of Bautista
et al. [1], the following picture emerges:

1. For d = 1, MWCP is solvable in O(nlogn) time
exactly (simple observation);

2. For d = 2, MWCP is solvable in O(n®) time
(Bautista et al. [1] with another algorithm pre-
sented in this work);

3. For d = 3, MWCP is not solvable in polynomial
time unless P = NP (this work);

4. For d > 4, MW CP is N'P-hard to approximate to
within n'/2=¢ for any € > 0 (this work).
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The above list immediately suggests several open prob-
lems, the following two of which are of particular inter-
est:

Open Problem 1 Find an algorithm with better time
complexity than O(n®) for MW CP in 2 dimensions or
prove a lower bound probably with some fine-grained hy-
pothesis.

Open Problem 2 Determine if MWCP can be ap-
proximated within a constant factor in 3 dimensions.

We conjecture that the answer to the first open prob-
lem is that there is no algorithm significantly faster than
O(n?). In light of the second open problem, it is tempt-
ing to consider what approximation guarantees are pro-
vided by polytopes with constantly many vertices. As
the following result demonstrates, constant approxima-
tion cannot be guaranteed by such solutions even in 2D.

Theorem 12 By restricting solutions to polytopes with
constant number of vertices one can not achieve a con-
stant factor approzimation for MW CP even in R? and
even for {+1,—1} weights.

Proof. Let P be a regular n-gon and let the weight of
each vertex be +1. Put a vertex with weight —1 outside
of P on the perpendicular bisector of each edge of P at
e-distance away from the edge. Choose € so that line
segments joining every two consecutive negative points
cross P. This defines the instance of MWCP with P
being an optimal solution of weight n.

Let vy,vo,...,v, and uq,us,...u, be vertices of the
clockwise order of ST and S~, respectively, such that
u; has e-distance with the edge between v; and v;41
(Un+1 = ’Ul).

Let C be a convex k-gon, we claim w(C) < k. Observe
that what makes this claim non-trivial is that we cannot
assume that vert(C') C S as in Lemma 3, since we have
an additional restriction of exactly k vertices.

C\P (the closure of C'\P) is a set of vertices, edges
and non-convex polygons. Let C’ be one of these non-
convex polygons. It suffices to show w(C’) < |vert(C)N
vert(C")|. Without loss of generality suppose vert(C’)N
S+ = {’Ul, V2, ooy UT}.

Let  outer mnegative points be  the  set
{wiy s Wiy, yui b S {u,ug,...u.—1} such that
for every 1 < j < £, u;; ¢ C'. Foreach 1 < j </
associate wu;, to the edge e of C” that crosses the
shortest line between u;; and P. By the choice of € two
vertices of e are in vert(C') Nwvert(C) and no edge is
associated to more than one outer negative point. Thus
|vert(C") Nwert(C)| > ¢4 1. On the other hand there is
at most r positive and at least » — 1 — [ negative points
in C’ thus w(C") <1+ 1 < |vert(C’) Nwert(C)|. O

Figure 4: Hlustration of the proof of Theorem 12. Here,
n = 6,k = 3, we chose C to result only in a single C’,
which is shown as a shaded area. We have [ = 1 with
u;, = ug and vertex ug is associated with the topmost
edge of C’. We have w(C”") = w(v1) + w(vs) + w(vs) +
w(u))=3-1=2=101+1.
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