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Optimally Tracking Labels on an Evolving Tree
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Abstract

Motivated by the problem of maintaining data struc-
tures for a large sets of points that are evolving over the
course of time, we consider the problem of maintaining a
set of labels assigned to the vertices of a tree. We study
the problem in the evolving data framework, where la-
bels continuously change over time due to the action
of an agent called the evolver. An algorithm, which
can only track these changes by explicitly probing the
individual vertices, is tasked with maintaining an ap-
proximate sketch of the underlying tree. Such a frame-
work necessitates an algorithm which is fast enough to
keep up with the changes, while simultaneously being
accurate enough to maintain a close approximation. We
present an algorithm that allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. We show
that in the limit, it is possible to maintain labels to
within an average distance of O(1) of their actual loca-
tions. We also present nearly matching lower bounds,
both on the distance, and the speed-up factor.

1 Introduction

Many modern data sets are characterized by two quali-
ties: massive size and dynamic variation with time. The
combination of size and dynamics makes maintaining
them extremely challenging. Algorithms that recom-
pute the structure can be prohibitively expensive, owing
to scale of the data set. Standard models for dynamic
structures (e.g., [6]) may not be applicable because we
may not know where or when changes occur within the
structure. These qualities together challenge the tradi-
tional single-input /single-output model used in the field
of algorithm design.

Anagnostopoulos et al. [1] proposed the evolving data
framework to capture the salient aspects of such data
sets. In this framework, the structure varies continu-
ously through the actions of an ewvolver, which makes
small, random changes to the structure behind the
scenes. Instead of taking a single input and produc-
ing a single output, an algorithm judiciously probes the

*Department of Computer Science, University of Mary-
land,College Park MD, USA, adach@umd.edu

fDepartment of Computer Science and Institute for Advanced
Computer Studies, University of Maryland, College Park MD,
USA, mount@umd.edu

David M. Mount'

current state of the structure and attempts to continu-
ously maintain a view of the structure that is as close
as possible to its actual state.

In this paper, we consider the problem of maintain-
ing a tree with n distinct labeled nodes in this frame-
work. The tree topology is assumed to be fixed over
time, but the evolver changes label locations by swap-
ping the labels of two adjacent vertices. We consider the
problem both in the classical evolving framework, where
swaps are chosen uniformly at random, and an adversar-
ial framework, where the evolver’s swaps are arbitrary.
To probe the structure’s current state, we assume the
existence of an oracle, which given a pair consisting of
a label and a vertex, either reports that the label truly
resides at this vertex, or it returns an edge incident to
the vertex indicating the first edge along the path lead-
ing from the probed vertex to the vertex where the label
currently resides.

We model our current state by means of a hypothe-
sized labeling, that is, a mapping of labels to the vertices.
Unlike the actual labeling, the mapping need not be 1-1.
Our update algorithm is extremely simple. With each
step, it queries a label-vertex pair. If the label is not
at this vertex, it moves the label hypothesis one vertex
closer to its actual location in the tree. To measure how
close our hypothesis is to the truth, we define a distance
function, which is just the sum of distances over all the
labels between their hypothesized and true locations.
Note that the evolver moves two labels with each step,
while our algorithm moves only one. For this reason
we provide our algorithm with a speedup factor ¢ > 1
(not necessarily an integer), which allows our algorithm
to perform multiple steps for each single action of the
evolver. (Further details are given in Section 2.)

We present four main results. We first show that,
even in the most benign case of a uniform random
evolver and any constant speedup, the steady-state dis-
tance over a bounded degree tree is (n) (Theorem 3).
Second, we show that given a speedup factor of ¢ = 2
and a uniform random evolver, there exists a simple al-
gorithm that achieves a steady-state distance of O(n),
for any bounded degree tree (Theorem 7). Next, we
show that given a speedup factor of ¢ > 2, for any
evolver, the same simple algorithm achieves a steady-
state distance of O(n) (Theorem 9). Finally we show
that for any speedup ¢ < 2, there exists a tree, and an
adversarial evolver, such that the steady state distance
is not in o(n?) (Theorem 10).
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1.1 Related Work

The problem we consider here falls under the general
category of pebble motion problems. Given a graph
G ={V,E}, asetoflabels L = {ly,la,...,1;}, alabeling
configuration is defined as a mapping M : L — V, such
that M(l;) # M(l;), for I; # l;. A single move of a
label I, where M () = v, can be defined as updating the
mapping to M (l) = u, where u is a neighbor of v.

Given two such label assignments M; and M on a
common graph, the problem of deciding whether there
is a sequence of moves to transform M7 to My, was first
referred to as the pebble motion problem by Kornhauser
et al. [9]. Under the restriction that a label can only be
moved to an unmapped neighboring vertex, Goraly and
Hassin et al. [7] show that the feasibility problem can
be decided in linear time. Ratner et al. [13] proved that
the associated problem of finding the optimal sequence
of moves is NP-hard.

A variant of pebble motion that is more closely re-
lated to this paper is the problem of token swapping.
Again we have a graph with n vertices, and there are
n distinct labels. A single move involves swapping the
labels of two neighboring vertices. It is easy to see that
on a simple path, transforming one configuration to an-
other is akin to sorting the path, and therefore such a
sequence of swaps can be generated by a variant of bub-
ble sort. Yamanaka et al. [14] showed that there exists
a polynomial time 2-approximation when the graph is
tree. Miltzow et al. [11] generalized this to a polynomial
time 4-approximation on general graphs. Graf consid-
ered a very similar problem of moving objects along a
tree by a robot and presents an excellent collection of
similar problems [8, Section 6].

Another related line of work involves algorithms for
evolving data sets, which was first introduced by Anag-
nostopoulos et al. [1]. In their framework, the input
data set is constantly changing through the actions of a
random evolving agent, or evolver, and an algorithm is
tasked with maintaining an output that is close to the
one corresponding to the current data. The algorithm
can only access the data set through a series of probes,
each of which returns some relevant local information.
They considered the problem of maintaining a sorted or-
der of points, where the true ranking of points evolves
over time. Besa et al. [4] gave an optimal algorithm that
maintains an approximate ordering with only O(n) in-
versions. They showed that a repeated run of an O(n?)
time sorting algorithm like the insertion sort suffices.

Researchers have considered other problems in the
evolving context, including path connectivity, minimum
spanning trees [2], shortest paths [16], and page rank [3],
among others. A common theme across these papers is
the evolution of the list of edges of the graph, either
through introducing a new edge, and deleting an exist-
ing one, or by changing the ranking of the edge weights.

1.2 A New Framework for Evolving Data

Our framework differs from the standard evolving data
framework in few significant aspects. The first involves
the behavior of the evolver. An important characteris-
tic of the evolving model introduced in [1] is that the
evolver acts randomly, and algorithms in this model ex-
ploit the fact that the evolver will occasionally improve
matters. In this paper we consider both uniformly ran-
dom evolvers as well as evolvers that are non-uniform,
possibly deterministic, which may act in an adversarial
manner.

The second difference is that our structure is more
general in that the mapping of labels to vertices need
not be 1-1. We think of the structure that the evolver
acts on as a “real world” object, which has capacity con-
straints on the number of labels each vertex can hold.
In contrast, we think of our hypothesized labeled point
set as a theoretical model of this real-world structure,
which is not constrained by real-world limitations. We
also provide our algorithm with a constant speed-up fac-
tor, to handle cases when each step of the evolver effects
a bigger change than that of the algorithm. In compen-
sation for this asymmetry, our algorithms and analyses
are much simpler.

The final difference is the nature of the oracle. We
can view our problem as a generalization of evolution-
ary sorting, but where the domain is a tree structure,
rather than a linear list. In sorting, the oracle deter-
mines whether two objects are out of order, but this is
not really meaningful in our tree-based setting. Instead,
our oracle provides a directional pointer to the current
location of the label.

2 Problem Formulation

In this section we provide the specifics of our evolving
token/label swapping problem. We are given a fixed
undirected tree T = (V, E) with n vertices and max-
imum degree k. Each vertex of the tree is assigned a
unique label from the set of labels L = {l3,...,l,}, that
is, there is a bijective mapping My : L — V. At any
time, let 7 = {T, Mp} denote the current “true” labeled
tree (see Figure 1(a)).

The evolver, denoted &, introduces changes to the
labelings. Each time it runs it selects a pair of adjacent
vertices in T and swaps their labels. The evolver may
either be random or adversarial. In the former case the
pair to be swapped is chosen uniformly at random, and
in the latter the adjacent pair can be chosen arbitrarily,
deterministically or adversarially. In Figure 1(a) and
(b), the evolver swaps labels X and G.

Our algorithm maintains a model of current labeled
tree in the form of a structure we call a hypothesis tree,
denoted H = {T, My}, where T is the same tree, and
My : L — V is a (not necessarily bijective) mapping
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Figure 1: The action of the algorithm on a labeled tree
T, evolver £, a labeled hypothesis tree H, and oracle
O. (a): The current state of the underlying labeled
tree T. (b): The state of T after the evolver swapped
labels across a pair of adjacent nodes. (c): A single step
in our algorithm A on H—Query label X, find that the
oracle is pointing us to the location of X on 7, and then
move the label X to the adjacent node in the returned
direction. (d): The final state of our hypothesis tree H
after a single step of A.

from labels to vertices. Note that My may assign mul-
tiple labels to a vertex of T (see Figure 1(c)).

In order to probe the current actual state, we assume
the existence of oracle, denoted O. Each query to the
oracle is presented in the form of a pair (I;, u), where I;
is a label and u is a vertex. If [; is currently located at
u, the oracle returns a special value null. Otherwise, it
returns the edge incident to u that lies on the shortest
path from u to Mp(l;), the vertex that contains I; in
the true labeling. (In Figure 1(c), the query O(X,u)
returns the edge (u,v) because in the actual tree, the
path to the node w containing X contains this edge.)

Each single step of algorithm A involves the following
actions: A selects a label [ and a vertex u. Then queries
the oracle to find O(l,u) and then is free to move the
label I from Mg (1) to any adjoining node in the tree. A
step of one such algorithm is illustrated in Figure 1(c)
and (d), where the algorithm is applied to label X. The

query O(X,u) returns (u,v), and the algorithm moves
label X to v. We define C as the class of such algorithms,
and throughout this paper we only consider algorithms
from this class.

To measure how close our hypothesized labeling is to
the true labeling we introduce a natural distance func-
tion. Given two vertices v and v in T, define their dis-
tance d(u,v) = dr(u,v) to be the tree distance, i.e.,
the length (number of edges) of the path between them.
Given the true labeling 7 and the hypothesized labeling
‘H and any label I;, let D; = d(Mr(l;), Mg (l;)) denote
the distance between the assigned label positions. De-
fine the overall distance to be D(T,H) = >, . Di.
Remark: D(T,H) is a metric since it is the sum of tree
distances, which are themselves metrics for a particular
label.

Observe that with each step the evolver can affect
the overall distance by at most 2, moving each of the
labels being swapped one node farther from our current
hypothesis. Since we have n vertices and the maximum
distance between two nodes on the tree is n— 1, we have
D(T,H) € O(n?). It is easy to see that there exists a
tree T and a sequence of swaps by the evolver, which
results in D(T,H) € Q(n?). Specifically, consider the
case where T is a path and the labels are swapped in
a sequence to result in a labeled path with the labels
sorted in the opposite order. On the other hand, our
algorithm clearly satisfies the following invariant: Every
step of an algorithm from class C reduces the overall
distance D(7T,H) by at most 1.

Given the disparity between the evolver’s and our al-
gorithm’s effect on D(T,H), we will allow our algorithm
a modest speedup factor. We denote this by a constant
¢ > 1. This means that the time taken by a single step
of the evolver is ¢ times as that of the algorithm. Or
in other words, over a large enough time interval if the
algorithm takes m steps, the evolver takes m/c steps.

The problem considered for a given speedup factor
¢ and any arbitrary starting configuration of H: Does
there exist an algorithm with this speedup factor such
that, in the steady state, after arbitrarily long execution
sequences, D(T,H) = o(n?)? We will in fact show that
(depending on the nature of the evolver) that there ex-
ists a deterministic algorithm and an associated speedup
factor such that D(7,H) = O(n) from the underlying
labeled tree, after some sufficiently large time and with
high probability.

3 Probabilistic Tools

In this section we mention the probabilistic tools we
use through out the paper. First, as a concentration
bound, we use a weak version of Chernoff’s inequality
(Theorem 4.5 in [12]).
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Lemma 1 (Chernoff Bound) Let X, Xs,..., X, be
independent random indicator variables, let X =Y. X;,
and let = E[X]. Then, Pr[X < &] < exp(—4).

Next we use a concept called Poisson approximation.
Suppose X1, Xo, ..., X,, are the random variables indi-
cating the number of balls in the i*" bin, when m balls
are thrown into n bins uniformly at random. We call
this the exact case.

Let Y7,Y5,...,Y, be independent Poisson random
variables with Pr[Y; = k] = e‘A%, where A = m/n.

In other words, Y; represents the load in a bin, when
the number of balls in each of them is a Poisson dis-
tribution with parameter A. We note the following on
any event that is a function of the loads of each bin.
(Corollary 5.9 [12].)

Lemma 2 (Poisson Approximation) Any event
that takes place with probability p in the Poisson case
takes place with probability at most p e \/m in the exact
case.

4 Lower Bounds on the Distance

We first prove a lower bound on D(7,H), when the
maintaining algorithm is in the class C'(A) as defined in
Section 2 and for any constant speedup factor ¢. Our
proof follows the same structure as a similar proof by
Anagnostopoulos et al.[1]. We prove the following for
D(T,’H)(t), for a sufficiently large t, where D(T,H)(t)
denotes D(T,H) at time ¢.

Theorem 3 For any speedup factor ¢ > 1 and for
all sufficiently large t, irrespective of the algorithm A,
D(T, ")y = Qn) with high probability, even in the
case of a random evolver.

Proof. For ease of analysis we let our algorithm A run
a single step every time unit, and the evolver, which
runs c¢ times slower perform a swap every c time units.
Consider the time interval [t—n/w, t], where w is a large
constant. The algorithm and the evolver can reduce
D(T,H) by at most n/w and 2n/cw during this time
interval, respectively. So if D(T,H),_,, ., Was at least
n/w+2n/cw + Q(n), then D(T,H) ) remains Q(n).

Next, let us assume D(T,H),_,, /,, is at most n/w-+
2n/cw + o(n). That implies there are at most n/w +
2n/cw+o(n) labels displaced from their true location at
time ¢ — n/w. Let L’ denote the set of displaced labels,
that is, L = {ll | D; > O} We define V' = {MT(ZL) |
l; € L'}, as the set of corresponding vertices on 7. And
then the set of incident edges as B = {(u,v) | u €
V' Vv € V'}. Since the degree of the T is k, we have
|E'| < k(n/w+ 2n/cw + o(n)).

In the same time frame, the algorithm A can act on
at most n/w labels. Call that set of labels L 4. Define

Va = {Mrp(l;) | l; € la}, as the set of corresponding
vertices on T. And then the set of incident edges as
Eq={(u,v) |u€VaVveVa} Now, |[Ea|l < kn/w.

Next we look at the set of edges that were unaltered
at time, t —n/w, and were not affected by the algorithm
throughout the time interval. Callit E* = E\(E'UE 4).
Now, |E*| > n — 2kn/w — 2nk/cw — k - o(n) > nr, for
some sufficiently large w, and v = (1 — 2k/w — 2k /cw —
k/w). The evolver picking any edge from E* exactly
once, guarantees that the labels stay swapped at the
end of the time interval.

Let X, be the indicator variable, representing the fact
that e is picked by the evolver exactly once. We use
the Poisson approximation scheme from Lemma 2. The
evolver chooses n/cw edges at random from the n avail-
able ones. Therefore A = (n/cw)/n = 1/cw, which is a
constant. Hence, Pr[Y, = 1] = A\e™ = s, a constant.
That implies, E[} . p. Ye] > syn. Using a Chernoff
bound (Lemma 1), we have

Pr

Z Y, < S'yn/Z] < e 9m),
ecE*

Using Lemma 2 again, we have

Pr lz X, < syn/2

ecE*

<e 2 opy Z Y, <57n/2]
V cw oyt

< e le—ﬂ(n) < e—Q(n)
V cw

Therefore with exponentially high probability, the
evolver picks at least syn/2 edges from E*, ensuring
that those edges stay swapped at the end of the interval.
Therefore, D(T,H) ;) = syn € €(n), as desired. O

5 Algorithm

Here, we describe a simple algorithm to track the la-
bels. We use the same algorithm in both the cases of
a random and an adversarial evolver. Recall the set of
labels L = {l1,...,l,}, and the definition of the oracle
from Section 2.

Intuitively, the algorithm works as follows. For each
l; € L, we query the oracle on (I;, Mg(l;)) and update
its location by moving it one step in the direction re-
turned by the oracle. We keep doing this until the oracle
returns null, that is, when [; is in its true location. We
then move on to the next label, repeating the process
indefinitely. A single pass over all the labels is called an
iteration of the algorithm.
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Algorithm 1 Tracking Labels

/*Continuously run the algorithm*/
for j < 1,2,...,00do
/*For every label in order*/
for i < 1 ton do
/*Until the label is in its true location*/
/*Query the oracle to find the direction*/
(u,v) < O(l;, M (L))
/*Update the location of the label*/
MH(ll) — v
end while
end for
end for

6 Analysis

Again for ease of analysis, we let our algorithm A run a
single step every time unit, and the evolver, which runs
¢ times slower, perform a swap every c time units.

Let tp be the time when the algorithm starts. Let
t; be the time when the jth iteration of the algorithm
ends. Let D(7,H) at the start of the jth iteration be
D(T,H);. And for a specific label /; we denote the
distance at the start of the jth iteration to be D; ;.

We set the total number of moves effected on I;, by
the algorithm in the j'" iteration as A;;. Therefore
the total decrease in D;, the distance with respect to
label ;, in the j* iteration is A; j. We define the total
decrease in D(T,H) due to the algorithm, in the j*"
iteration as A;, Aj = >, o1 Aij.

We note the following about At;, the time taken by
the j iteration.

Lemma 4 Atj = tj — tj,;[ = n—i—.Aj.

Proof. Every step of the algorithm either moves a label
in the direction of its true location, or fixes it, i.e., finds
the label is in its true location. Since there are n labels,
and A; is the total moves effected by the algorithm, we
have the result O

Next we show a lower bound for the time taken by
the jt* iteration.

Lemma 5 At; > 35 (D(T,H); +n).

Proof. For a specific label [;, our algorithm reduces
its distance by A; ;, then finds that the label is at its
true location, and then moves on to the next label.
This implies that for some subset of steps taken by the
evolver, the distance associated with [; was reduced by
D; ; — A; ;. Otherwise, the algorithm would not have
moved on to the next label.

This further implies that in the j** iteration for some
subset of its steps, the evolver reduced the overall dis-
tance by at least >, (D; j—A; ;) = D(T,H);—Aj;. That

th

takes the evolver at least (D(7,H); — A;)/2 steps, or
at least (c¢/2)(D(T,H); — A;) time.

Therefore we have At; > (¢/2)(D(T,H); — A;). Us-
ing Lemma 4, we have At; > §(D(T,H); — At; +n).
Simplifying the inequality gives us the desired result [J

6.1 Random Evolver and Speedup 2

In this section we prove the following: In the case of a
random evolver, where the evolver £ picks an edge at
random and swaps its labels, an algorithm that runs at
least twice as fast as the evolver maintains an optimal
distance. Or in other words, we show that for ¢ > 2,
our algorithm ensures D(7,H) € O(n) with high prob-
ability. Using Theorem 3, we can conclude that our
algorithm is optimal for ¢ > 2 and a random evolver.

As in [4], we first prove an interesting result about
the random evolver. We show that a constant fraction
of the steps taken by the random evolver do not increase
the overall distance D(T,H).

Lemma 6 For ¢ = 2 and degree k, there exists a con-
stant €, 0 < € < 1, such that for all j, the random
evolver does not increase the overall distance in at least
eAt; steps in the %™ iteration, with high probability.

Proof. From Lemma 4, we know At; is at least n. We
look at the first n/10k steps of this particular iteration.
The algorithm can process at most n/10k nodes in this
time. The number of edges incident on these nodes is
at most n/10. Let E’ denote the set of edges left un-
altered by the algorithm in this time interval. Then
|E’| > 9n/10. In the same time period, the evolver picks
edges at random from the edge set E, n/20k times with
replacement.

For every edge e in E, we set X, =1, if e € E’, and
the evolver picks e, at least twice in the time-frame, but
picks none of the edges incident on e.

We use the Poisson approximation scheme from
Lemma 2. The evolver chooses n/20k edges from the
n available ones. Therefore A = (n/20k)/n = 1/20k,
which is a constant. Now let Y. be the independent
Poisson approximations of X., with A = 1/20k.

Next we find Pr[Y, = 1]. That represents the event
when e is picked from E’, and e is picked twice but none
of the edges incident on e are picked. In the Poisson
approximation scenario, each edge is picked j times with
a probability e=*\7/;!. Therefore, the probability that
an edge is picked at least twice is (1 —e™* — Xe™*), and
the probability that it is not picked whatsoever is e™*.
Since at most 2k edges can be incident on e, we have

PrlY.=1] > 19—0 (1- e N — )\e*)‘) e 2k,

Since the right hand side is a constant, there ex-
ists s = O(1) such that Pr[Y, = 1] > s. Therefore,
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E[} .cp Ye] > sn. Using a Chernoff bound (Lemma 1),
we have

Pr

ZYe < sn/21 < e 9N

eckE

Using Lemma 2 again, we have

Pr [ZXe<sn/2] e,/ﬁPr
eeFE

Z Y, < sn/Z]
ecE

N _q(n) —Q(n)
< — < .
T =€

We note that if X, = 1, then e is left unaltered by the
algorithm, but it is altered at least twice by the evolver.
That further means, one of those steps by the evolver
either decreases the overall distance D(7,H) or leaves
it unchanged. And since the number of such edges e,
with X, = 1, is at least sn/2 with exponentially high
probability, we conclude that in at least sn/2 of the
evolver steps, in the first n/10k steps of the iteration,
D(T,H) does not increase. Dividing the iteration into
chunks of n/10k steps, we obtain the desired result. O

IN

Finally we prove one of the main theorems of this
paper, that for a long enough passage of time, D(T,H)
converges to O(n), in the case of ¢ = 2, and a random
evolver.

Theorem 7 Given a tree of size n and a constant de-
gree, and a random evolver, there exists z (a function
of m) such that for all j > z, Algorithm 1 achieves
D(T,H); € O(n), with a speed-up factor c = 2.

Proof. Consider the j'" iteration. From Lemma 6, the
evolver increases D(7T,H) by at most (1 —e)At;. In the
same iteration the algorithm reduces D(T,H) by Aj;.
Therefore, with high probability:

DT 1),y
< D(T,H); + (1 —e)At; — A,
< D(T,H); +n— €At [Lemma 4]
< (1- 5) DT H); + (1~ %) n

[¢c =2 in Lemma 5]
- (1-9) D(T,H>O+i(1_;)fn
< (1 — %)j n® +O(n) [since D(T,H) < n?]

By choosing 2 = 10g; (1 _¢/9) 7, we have D(T,H), , €
O(n). O

Remark: We showed that for large enough j,
D(T,H); € O(n). Can we conclude the same about

D(T,H) throughout the j* iteration as well? In par-
ticular we look at D(T,H), ;.;- Wenote that in our Algo-
rithm 1 we could have started with processing the label
l; first (instead of l1), l;+1 next, and so on. Therefore
for a large enough j, D(T,H), ; € O(n) as well. Since

D(T, H)ip1; < D(T M), + O( ), we conclude that
for a large enough passage of time D(7,H) converges
to O(n).

In our labeled hypothesis tree H multiple labels could
reside at a particular node. We show a simple result on
the maximum number of labels that could be mapped
to single vertex in T

Corollary 8 Let Ly, be the set of labels residing at a
node v in H, after a long enough passage of time. Then,

Ll € O(Vn)

Proof. Let |Ly ,| = w. For l;’s, l; € Ly ., we consider
the corresponding distances D;’s. Consider that set as
D,, D, ={D,|l; € Ly ,}. Since the tree has degree has
k, there can be at most k 1’s in D,,, similarly £ number
of 2’s, and so on. At most one member of D, can be
zero. Therefore

D(T.H) > Y = > k(14+2+ +(w-1)/k) € Qw?).
x€D,

Since D(T,H) € O(n) after a long enough time from
Theorem 7, we conclude w € O(y/n). O

6.2 Adversarial Evolver and Speedup > 2

We conclude with the case when the evolver is adver-
sarial. That means we cannot rely on a result similar
to Lemma 6. We show that for a speedup factor of
¢ > 2, or in other words, if there exists § € R, such that
c =2+ J, we can still maintain an optimal distance.

Theorem 9 Given a tree of size n, an adversarial
evolver, there exists z (a function of n) such that for
all j > z, Algorithm 1 achieves D(T,H); € O(n), with
any speed-up factor ¢ > 2.

Proof. Consider the ;' 1terat10n. The evolver in-
creases D(T,H) . Therefore
D(T,H) ;1
2At,
<D(T.H),; + —L A
2At;
= D(T,H); + L +n— At [Lemma 4]

D(T,H); +n— (1—) At;.
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By applying Lemma 5, we have

D(T.H), .,
c—2
< D(T.H);+n— g (D(T,’H)j +n>
[Lemma 5]
4 4
= a3 AT g

(257—0)]213(7"%)0 +Szi; <2ic>jn
(24+C>J n2+0(n). [e>2 D(T,H)<n?

For ¢ > 2 , and by choosing j > log% n, we have

D(T.H),,, = O(n). 0

6.3 Adversarial Evolver and Speedup < 2

We adapt a construction from Biniaz et al. [5] to prove
a lower bound on the required speed-up to ensure
D(T, M)y € O(n). Construct two configurations of
a labeled tree Ty, and 7T; as in Figure 2. On such a
tree: D(T1,To) ~ 2 OPT, where OPT is the number
of optimum swaps required to go from one configura-
tion to the other. Intuitively, an algorithm running at
a speed-up factor less than 2, will fail to catch up with
an adversarial evolver that takes OPT swaps to modify
To, to T1. We can show that any algorithm from class C
running with speed-up 2 — §, where 4 is a small positive
constant, cannot achieve D(7,H) € O(n). In fact we
can prove something stronger:

Theorem 10 (Lower bounds on speed-up) Given
any time instant tg, there exists a tree T, an ad-
versarial evolver £, and a time instant t > ty s.t.
D(T, M)y € Q(n?), for any algorithm from class C,
which runs with a speedup 2 — &, where § is a positive
constant

Proof. Suppose we have access to an algorithm A from
the class C, as defined in Section 2, with a speed-up
factor of ¢ = 2—4, ¢ is a positive real constant. We show
the existence of a tree, and an adversarial evolver, where
such a speed-up is not sufficient for D(T,H) € O(n).

We adapt a construction from Biniaz et al. [5]. See
Figure 2. Let 7y be a uniquely labeled tree, with 3
wings, « tails, and a central vertex. Each wing contains
«a nodes. For our purposes, we let @ € Q(n). n =
af + a+ 1. Let 71 be another labeled instance of the
same tree, where the labels of the wings, are cyclically
permuted. The order of the labels on a wing remains
the same, as do other labels of the tree. This gives us
D(T1,To) = Ba(a +1).

Biniaz et al. [5] show that the optimal number of
adjacent swaps to go from Ty to 77 is opt(a,B) =

To T

Figure 2: 7Ty is a n-node tree with 8 wings, « tails, and a
central vertex. Each wing contains a nodes. 7; has the
labels of the wings of Ty cyclically permuted. Adapted
from [5].

(B+ 1) (a(a+1)/2 4 2«). Consider a time tg, where Ty
is the labeled configuration of the tree, with our hypoth-
esis tree Ho being exact, i.e., D(Tp, Ho) = 0. Next, con-
sider an adversarial evolver £, which performs opt(«, )
number of swaps such that at time t; = to + opt(e, ),
T is the true labeling.

Let ‘H be the hypothesized labeling at time ¢;. Since
A has a speed-up of 2 — 4, and can affect the dis-
tance by at most 1 every step, we have D(H1,7y) <
(2 —6) opt(a, B). Considering f = 2/§, and o = Q(n)
we have the following:

D(H1,Th)

> pa(a+1) - -9 (3+1) (L0 100

[D(-,-) is a metric]

> <§ - (2_(2224_6)) ala+1) —s(d)a

[Set B =2, s(6) is a constant]

>

N

ala+1) —s(0)a € Q(n?).
[For o € Q(n), and constant ¢]

O

7 Concluding Remarks

In this paper, we have presented an efficient algorithm
for tracking vertex labels in a tree in the evolving data
framework. Our algorithm allows for both randomized
and adversarial evolution of the data, subject to allow-
ing a constant speedup factor over the evolver. Our
analysis showed that in the limit, it is possible to main-
tain labels to within an average distance of O(1) of their
actual locations. We also presented nearly matching
lower bounds, both on the distance and the speed-up
factor.
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This raises the question whether the evolving data
framework can be fruitfully applied to tracking the
movement of objects through more complex spaces and
structures. Applications include real-time tracking of
moving agents through GPS tracking of unmanned
aerial vehicles [15] and tracking disease hot-spots that
evolve over the course of time [10].

We would like to thank Michael Goodrich for intro-
ducing us to the evolving data framework and for in-
spiring discussions on this topic.
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