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Abstract

A perfect matching M on a set P of n points is a col-
lection of line segments with endpoints from P such
that every point belongs to exactly one segment. A
matching is non-crossing if the line segments do not
cross. Two matchings M and N are said to be com-
patible if there are no crossings among any pair of line
segments in M ∪ N. We introduce a notion of diverse
non-crossing matchings: a pair of perfect matchings M
and N are k-diverse if, for every p ∈ P, the distance be-
tween the matched partners of p in M and N is at least
k. In this contribution, we describe a polynomial time
algorithm to determine if a set of points in convex posi-
tion admits two compatible and perfect NCMs that are
k-diverse. For points in convex position, we also show
that if a perfect matching M is given as input, then we
can determine, in polynomial time, if another perfect
matching N exists that is compatible with M and is
such that M and N are k-diverse. Finally, we also es-
tablish that every point set in general position admits a
pair of compatible and perfect NCMs. The first two re-
sults also hold for bichromatic points, and we also give
a characterization for when a bichromatic point set in
convex position admits a pair of perfect and disjoint
NCMs.

1 Introduction

Matching problems involve partitioning a set of objects
into pairs subject to some constraints. For example, in
the context of graphs, we are given a binary relation
over the set of objects and require the pairs to be re-
lated. In a geometric setting, the set typically consists
of geometric objects (Aloupis et al., 2013), and such
problems have received a lot of attention because of
their practical relevance.

Our focus is on the setting of matching points using
line segments. In particular, given a set P of n points
in the plane R2, we are interested in matching them
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with straight line segments. We focus on perfect non-
crossing matchings (NCMs), i.e, matchings where every
point is matched and no two line segments cross. Un-
less otherwise mentioned, we assume that all match-
ings are perfect.

It turns out that any collection of points admits a NCM
and that this can be found in O(n log n) time (Hersh-
berger and Suri, 1990; Lo et al., 1994). Many studies on
NCMs focus on optimizing some structural property of
the matching, such as the maximum, minimum, or av-
erage edge length. Two NCMs M and N are said to
be disjoint if every point has a different matched part-
ner in both matchings, and compatible if the segments
in M ∪ N do not cross.

For optimization problems, the decision or search ver-
sion of the question seeks to find some optimal solu-
tion, while the counting version asks to enumerate all
optimal solutions. In many application scenarios, the
former is not sufficient, while the latter is too demand-
ing in terms of computational expense. This motivates
the notion of demanding not all but a select collection
of solutions. In most applications, the requirement is
not just for a multitude of solutions, but for an “inter-
esting” collection of solutions: for example, informally
speaking, solutions that are minor variations of one an-
other and are very similar may not be very useful in
most settings.

The existence of a diverse collection of solutions has
been explored in several settings recently. Studies
on diverse solutions have focused on a wide array
of problems including, but are not limited to, vertex
cover (Baste et al., 2022), matchings (Fomin et al., 2020),
stable matchings (Ganesh et al., 2021), matroids (Fomin
et al., 2021), satisfiability (Nadel, 2011), Kemeny rank
aggregation (Arrighi et al., 2021), etc.

To propose that we find “diverse” solutions, we need
a notion of distance between solutions. In the setting
of matchings between points in R2, a natural notion of
“distance between matchings M and N” would be an
aggregation of the distance between the matched part-
ners of all the points in the two matchings. The aggre-
gation function that we work with picks out the small-
est such distance. In particular, using M(·) to denote
the matched partner of a point p in a matching M, we
define the distance between two matchings M and N
over a point set P as minp∈P d(M(p), N(p)). Note that
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the we have used the term “distance” informally and
this function does not satisfy the triangle inequality.
We say that a collection of matchings M is k-diverse
for some positive number k if the distance between ev-
ery pair of matchings in M has a distance of at least k
between them. Throughout our discussions, we focus
on the problem of finding two matchings.

Our Contributions. We propose the following natural
computational questions:

DIVERSE NCMS
(DIVERSE COMPATIBLE NCMS)

Input: A set P of 2n points and a positive ratio-
nal number k.
Question: Does P admit two perfect matchings
that are k-diverse and compatible, i.e., two DC-
NCM’s?

ANOTHER DIVERSE NCM
(ANOTHER DIVERSE COMPATIBLE NCM)

Input: A set P of 2n points, a perfect matching
M over P, and a positive rational number k.
Question: Is there a perfect NCM N over P such
that M and N are k-diverse (and compatible)?

We first show that any monochromatic point set P in
general position with an even number of points such
that |P| ⩾ 4 admits two compatible NCMs. Note that
this is easy to see for points in convex position: a set of
alternating edges on the convex hull and the remain-
ing edges of the convex hull form a pair of compatible
matchings. For points in general position, we gener-
alize this idea by considering the layer decomposition
and peeling off convex layers with an even number of
points, and carefully matching across layers when we
encounter layers with an odd number of points. We
also characterize bichromatic point sets in convex posi-
tion that admit two disjoint non-crossing matchings1.

Theorem 1 (Disjoint Matchings) Any point set P in
general position admits two compatible perfect NCMs. A
bichromatic point set P in convex position admits two dis-
joint and perfect NCMs if and only if the orbit of each point
contains at least two points of the opposite colour.

We next propose the computational problem of find-
ing a matching that is diverse with respect to and, op-
tionally, compatible with a given matching. We show
that when points are in convex position, we can find

1We refer the reader to Section 2 for the formal definitions of the
terminology used here.

such a matching in polynomial time. We use a dy-
namic programming approach here, considering sub-
problems corresponding to contiguous subintervals of
the convex hull.

Theorem 2 (Another Diverse Matching) For both
monochromatic and bichromatic points in convex position,
the problems ANOTHER DIVERSE NCM and ANOTHER
DIVERSE COMPATIBLE NCM admit polynomial time
algorithms.

Finally, we consider the problem of finding a pair of
diverse and compatible matchings. We demonstrate a
polynomial time algorithm for points in convex posi-
tion. For this algorithm, we note that any solution can
be viewed equivalently as a collection of disjoint non-
overlapping polygons. We prove a structural lemma
which shows that there always exists an optimal so-
lution consisting of polygons with a constant number
of sides. We can then leverage this to come up with a
dynamic programming algorithm that considers, as be-
fore, subproblems corresponding to contiguous subin-
tervals of the convex hull, and makes progress by
guessing all possible choices for the polygon that the
first point on the subinterval belongs to.

Theorem 3 (Diverse Compatible Matching) For both
monochromatic and bichromatic points in convex posi-
tion, DIVERSE COMPATIBLE NCMS admits a polynomial
time algorithm.

Related Work. The task of finding a matching that
minimizes the length of the longest edge is called
the bottleneck NCM problem and is known to be
NP-complete in general and tractable for points in
convex position and other special cases, and has
been well-studied for monochromatic and bichromatic
points (Abu-Affash et al., 2014; Carlsson et al., 2015;
Savić and Stojaković, 2017, 2022; Biniaz et al., 2014).

Other variants of the problem such as those which
involve minimizing the length of the shortest edge
or maximizing the length of the longest edge are
tractable (Mantas et al., 2021). Finally, to the best of
our knowledge, the complexity of finding a matching
that maximizes the length of the shortest edge is open.

In the context of the setting where we have a point set
and a matching, it was conjectured by Aichholzer et al.
(2009) that for every perfect matching M of a point set
P such that |P| is a multiple of four, there is another
perfect matching, N of P such that M and N are com-
patible. This was subsequently proved by Ishaque et al.
(2012) using a constructive argument that also leads to
an efficient method for constructing the matching N. It
is also known that the conjecture does not hold when
|P| is not a multiple of four Aichholzer et al. (2009).
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Organization of the paper. Due to lack of space, we
defer the proofs of Theorem 1 and Theorem 2 to the
full version of the paper. We provide most of the de-
tails towards showing Theorem 3 in Section 3, only de-
ferring the argument of correctness and remarks about
the bichromatic case to the full version.

2 Preliminaries

In the setting of monochromatic points, we use P typ-
ically to denote a set of 2n points in R2 with n >
1. When we work with points in general position,
we will use P to denote the convex hull of P. In
case of convex point sets, we label the points of P by
p0, p1, . . . , p2n−1 in positive (counterclockwise) direc-
tion around the convex hull. To simplify the notation,
we will generally use only indices when referring to
points. We write {i, . . . , j} to represent the sequence
i, i + 1, i + 2, . . . , j − 1, j. All operations are calculated
modulo 2n. Note that i is not necessarily less than j,
and that {i, . . . , j} is not the same as {j, . . . , i}.

A bichromatic set of points is a point set P equipped
with a coloring function c : P → {0, 1} that classifies
each point as either “red” (points for which c(p) = 0)
or “blue” (points for which c(p) = 1). We usually de-
note these sets by R and B respectively, with P = R ∪ B
and |R| = |B| = n, and again, we assume n > 1.

We say that two line segments s and t in the plane cross
if there is a point on the plane which is not an endpoint
of either s and t that belongs to both s and t. In partic-
ular, note that if s = t, then s and t cross each other.

The convex hull of a point set is the smallest convex
polygon that contains all the points of it. The convex
layers or the onion decomposition of a set of points are a
sequence of nested convex polygons having the points
as their vertices. The outermost one is the convex hull
of the points and the rest are formed in the same way
recursively. The innermost layer may be degenerate,
consisting only of one or two points. The number of
polygons in onion decomposition of a point set is called
its layer depth.

A perfect matching on the set P is a set of n straight
line segments whose endpoints are points in P such
that each point is the endpoint of exactly one line seg-
ment. For bichromatic points sets, we further require
that each line segment has one red and one blue end-
point. If the line segments do not cross, we refer to such
a matching as a (bichromatic) non-crossing matching.
All matchings are both perfect and non-crossing unless
mentioned otherwise.

We usually use the notation M or N to refer to match-
ings. With a slight abuse of notation, given a matching
M over P and a point p ∈ P, we use M(p) to denote the

matched partner of p in M, that is, the point q such that
the segment connecting p and q belongs to M. Two
matchings M and N are called disjoint if the matched
partners of all points in p are different in both, i.e, for
all p ∈ P, we have that M(p) ̸= N(p), and compati-
ble if the segments in the multiset M ∪ N do not cross.
Note that all compatible matchings are disjoint, while
the converse may not be true.

We define the distance between two matchings M
and N over a point set P, denoted DP(M, N), as
minp∈P(dist(M(p), N(p))), where dist(·, ·) denotes the
Euclidean distance between two points. We also refer
to this as the diversity of the set {M, N} or the diversity
between M and N. Further, we say that a pair of match-
ings M and N over P are k-diverse if DP(M, N) ≥ k.
Note that if M and N are not disjoint, then they are
0-diverse. If the point set P is clear from the context,
we may drop the subscript P from the notation for dis-
tances and diversity.

We now introduce some terminology that is relevant to
bichromatic point sets.

Definition 1 (Balanced, Blue-heavy, Red-heavy) A set
of points is balanced if it contains the same number of red
and blue points. If the set has more red (blue) points than
blue (red), we say that it is red-heavy (blue-heavy).

Lemma 1 (Savić and Stojaković (2022)) Every balanced
set of points can be matched.

Definition 2 (Feasible pair.) We say that (i, j) is a feasi-
ble pair if there exists a matching containing (i, j). We refer
to i as a feasible neighbour of j and vice versa.

Lemma 2 (Savić and Stojaković (2022)) A pair (i, j) is
feasible if and only if i and j have different colors and
{i, . . . , j} is balanced.

Definition 3 (Functions o+ and o−.) [Savić and Sto-
jaković (2022)] By o+(i) we denote the first point starting
from i in the positive direction such that (i, o+(i)) is
feasible. By o−(i) we denote the first point starting from i
in the negative direction such that (o−(i), i) is feasible.

As we assume that the given point set is bal-
anced, Lemma 2 guarantees that both o+ and o− are
well-defined. It also turns out that o− is the inverse
function of o+ as mentioned in Savić and Stojaković
(2022). We denote the composition of o+ function k
times on a point p as ok(p) and also use the notation
o(p) to mean o+(p).

Definition 4 (Orbit) [Savić and Stojaković (2022)]

An orbit of i, denoted by O(i), is defined by O(i) :={
ok(i) : k ∈ Z

}
. By O(P) we denote the set of all orbits

of a convex point set P, that is O(P) := {O(i) : i ∈ P}.
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3 DC-NCM for points in Convex Position

Suppose that the points of P are in convex position. Let
F be a collection of even-length simple convex poly-
gons, each of length ≥ 4. We say that F is a feasible
collection of polygons on P if the following hold true:

• Every p ∈ P is a vertex of exactly one polygon in
F , and every polygon in F has all its vertices in P.

• No edge of a polygon in F crosses an edge of an-
other polygon in F .

For any even-length simple polygon T of length ≥ 4,

• let partners(T) denote the set of all unordered
pairs {u, v} of vertices of T such that exactly one
vertex of T appears between u and v, when one
traverses from u to v in counter-clockwise direc-
tion along the boundary of T.

• let quality(T) denote the minimum of dist(u, v)
over all pairs {u, v} in partners(T).

For any feasible collection F of polygons on P, let
quality(F ) denote the minimum of quality(T) over all
polygons T in F .

Note that for any k > 0, the following are equivalent:

• There exists a pair of compatible perfect NCMs M
and N on P such that DP(M, N) ≥ k.

• There exists a feasible collection F of polygons on
P such that quality(F ) ≥ k.

This claim follows from the fact that the union of the
line segments in any pair of compatible NCMs over P
is a collection of even-length simple convex polygons
whose vertices partition P and do not cross, i.e, a feasi-
ble collection of polygons on P.

Thus, our goal is to find a collection F of feasible poly-
gons on P for which quality(F ) is maximized.

Let A and B be non-empty sets of real numbers. We say
that A dominates B if for every x ∈ A, we have x ≥ y
for some y ∈ B. Note that

• If A ⊆ B, then A dominates B.

• A dominates B if and only if min(A) ≥ min(B).

Our dynamic programming algorithm relies on the fol-
lowing structural lemma, which says the following: if
F is a feasible collection of polygons on P with quality
s, then we can find a (potentially different) F ′ which is
a feasible collection of polygons on P whose quality is
no worse than s, and further, every polygon in F ′ has
four or six vertices. This allows us to devise a poly-
nomial time algorithm based on “guessing” the nature
of the polygons that the points belong to in some final
solution.

Figure 1: Breaking up a polygon on 4q points.

Our proof for the structural lemma considers two sce-
narios. First, when the number of vertices of a poly-
gon T in F is a multiple of four, we simply “break” it
into four-length polygons. In this situation, we intro-
duce no new pairs into the set of matched partners (i.e,
partners(T′) ⊆ partners(T) for any T′ generated by the
breaking procedure) , and so the quality of the solution
is not affected. The other situation is that the number
of vertices of a polygon T in F is of the form 4q + 2. In
this case, we find a six-length polygon T′ and organize
the remaining 4q − 4 points into (q − 1) polygons as in
the previous case. The choice of T′ is made carefully so
as to ensure that the overall quality of the solution thus
obtained is no worse than the original.

Lemma 3 Let F be a feasible collection of polygons on P.
Then, there exists a feasible collection F ′ of polygons on P
such that

• Every polygon in F ′ has length either 4 or 6.

• quality(F ′) ≥ quality(F )

Proof.
Let F ′ be a family of polygons on P obtained from F
as follows: For each polygon T in F of length > 6,

Case 1: T has length 4q, for some integer q ≥ 2

Let 0, 1, 2 . . . , 4q − 1 denote the vertices of T, appear-
ing in that order as one traverses in counter-clockwise
direction along its boundary. We replace T with q sim-
ple convex polygons T0, T1, . . . , Tq−1, each of length 4,
where
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Figure 2: The even and odd polygons Teven and Todd.

• T0 has vertices 0, 1, 2, 3.

• T1 has vertices 4, 5, 6, 7.
...
...

• Tq−1 has vertices 4q − 4, 4q − 3, 4q − 2, 4q − 1.

Let 0 ≤ j ≤ q − 1. Note that

partners(Tj) =
{
{4j, 4j + 2}, {4j + 1, 4j + 3}

}
⊆ partners(T)

So, we have

min
{u,v}∈partners(Tj)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
That is, quality(Tj) ≥ quality(T).

Thus,

min
0≤j≤q−1

(
quality(Tj)

)
≥ quality(T)

Case 2: T has length 4q + 2, for some integer q ≥ 2

Let 0, 1, 2, . . . , 4q + 1 denote the vertices of T, appear-
ing in that order as one traverses in counter-clockwise
direction along its boundary.

Let Teven and Todd denote the simple convex poly-
gons, each of length 2q+ 1, on the vertices 0, 2, 4, . . . , 4q
and 1, 3, 5, . . . , 4q + 1 respectively. Let e0, e2, e4, . . . , e4q
denote the interior angles of Teven, at the vertices
0, 2, 4, . . . , 4q respectively. Let o1, o3, o5, . . . , o4q+1 de-
note the interior angles of Todd, at the vertices
1, 3, 5, . . . , 4q + 1 respectively.

For any simple convex polygon, since its exterior an-
gles sum up to 2π, at most two of them are > 2π

3 . So,
at most two of its interior angles are < π

3 .

Figure 3: Breaking up a polygon on 4q + 2 points.

Thus, each of Teven and Todd has at most two in-
terior angles that are < π

3 . That is, at most
two of e0, e2, . . . , e4q are < π

3 , and at most two of
o1, o3, . . . , o4q+1 are < π

3 . So, among the ≥ 5 pairs of
angles (e0, o1), (e2, o3), (e4, o5), . . . , (e4q, o4q+1), there is
at least one pair, say (e2ℓ, o2ℓ+1), such that each of e2ℓ
and o2ℓ+1 is ≥ π

3 .

We replace T with a simple convex polygon T0
of length 6, and q − 1 simple convex polygons
T1, . . . , Tq−1, each of length 4 (c.f. Figure 3), where:

• T0 has vertices
2ℓ− 2, 2ℓ− 1, 2ℓ, 2ℓ+ 1, 2ℓ+ 2, 2ℓ+ 3.

• T1 has vertices 2ℓ+ 4, 2ℓ+ 5, 2ℓ+ 6, 2ℓ+ 7.

• T2 has vertices 2ℓ+ 8, 2ℓ+ 9, 2ℓ+ 10, 2ℓ+ 11.
...
...

• Tq−1 has vertices
2ℓ+ 4q − 4, 2ℓ+ 4q − 3, 2ℓ+ 4q − 2, 2ℓ+ 4q − 1.

Here, the additions are modulo 4q + 2.
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Let 1 ≤ j ≤ q − 1. Note that

partners(Tj) =
{
{2ℓ+ 4j, 2ℓ+ 4j + 2},

{2ℓ+ 4j + 1, 2ℓ+ 4j + 3}
}

⊆ partners(T)

So, we have

min
{u,v}∈partners(Tj)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
That is, quality(Tj) ≥ quality(T).

Next, we show that quality(T0) ≥ quality(T).

Let

A :=
{

dist(u, v) | {u, v} ∈ partners(T0)
}

B :=
{

dist(u, v) | {u, v} ∈ partners(T)
}

Note that

partners(T0) \ partners(T) =
{
{2ℓ+ 3, 2ℓ− 1},

{2ℓ+ 2, 2ℓ− 2}
}

Consider the triangle formed by the points 2ℓ − 1,
2ℓ+ 1, 2ℓ+ 3. Here, as o2ℓ+1 ≥ π

3 ,

dist(2ℓ+ 3, 2ℓ− 1) ≥ min
(

dist(2ℓ− 1, 2ℓ+ 1),
dist(2ℓ+ 1, 2ℓ+ 3)

)
.

Consider the triangle formed by the points 2ℓ − 2,
2ℓ, 2ℓ+ 2. Here, as e2ℓ ≥ π

3 ,

dist(2ℓ+ 2, 2ℓ− 2) ≥ min
(

dist(2ℓ− 2, 2ℓ),
dist(2ℓ, 2ℓ+ 2)

)
.

Also, note that partner(T) contains the pairs
{2ℓ− 1, 2ℓ+ 1}, {2ℓ+ 1, 2ℓ+ 3}, {2ℓ− 2, 2ℓ}, {2ℓ, 2ℓ+ 2}.
Therefore, A dominates B and so, min(A) ≥ min(B).

That is,

min
{u,v}∈partners(T0)

(
dist(u, v)

)
≥ min

{u,v}∈partners(T)

(
dist(u, v)

)
Thus, quality(T0) ≥ quality(T).

Hence, we have

min
0≤j≤q−1

(
quality(Tj)

)
≥ quality(T),

and this concludes the proof. □

Based on the lemma, we have the following dynamic
programming approach: Let 0, 1, . . . , 2n − 1 denote the
points of P in counter-clockwise order. For every 0 ≤
i, j ≤ 2n − 1 such that (j − i) is odd, let Qi,j denote the
set of points {i, i + 1, . . . , j} and let:

T(i, j) =


max DQij(M, N) if j − i ≥ 3,
−∞ if j − i = 1,
+∞ if j − i < 0;

where the max is taken over all pairs of disjoint com-
patible perfect NCMs M and N over the point set Qi,j.

Note that T(0, 2n − 1) is the value of the optimal solu-
tion. We compute and store T(i, j)′s using the follow-
ing recurrence:

T(i, j) =


max(α(i, j), β(i, j)) if j − i ≥ 5,
α(i, j) if j − i = 3,
−∞ if j − i = 1,
+∞ if j − i < 0,

where α(i, j) is given by:

max
i < p1 < p2 < p3 ⩽ j :
p1 − i is odd
p2 − p1 is odd
p3 − p2 is odd

min


dist (i, p2) ,
dist (p1, p3) ,
T (i + 1, p1 − 1) ,
T (p1 + 1, p2 − 1) ,
T (p2 + 1, p3 − 1) ,
T (p3 + 1, j)



and β(i, j) is given by:
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max
i<q1<q2<q3<q4<q5⩽j:

q1 − i is odd
q2 − q1 is odd
q3 − q2 is odd
q4 − q3 is odd
q5 − q4 is odd

min



dist (i, q2) ,
dist (q1, q3) ,
dist (q2, q4) ,
dist (q3, q5) ,
dist (q4, i) ,
dist (q5, q1) ,
T (i + 1, q1 − 1) ,
T (q1 + 1, q2 − 1) ,
T (q2 + 1, q3 − 1) ,
T (q3 + 1, q4 − 1) ,
T (q4 + 1, q5 − 1) ,
T (q5 + 1, j)



.

We remark that the recurrences are well-defined. The
overall intuition for the recurrences above is the fol-
lowing: fix an arbitrary solution that has the property
guaranteed by Lemma 3. We attempt to “guess” the
type and vertices of the polygon that the first point be-
longs to in this solution. For each fixed guess, we have
a natural partition of the remaining points into smaller
sub-instances (see Figures 4 and 5). It is easy to identify
invalid guesses, by which we mean a polygon which is
such that there is no solution that contains it.

For any valid guess, the recurrence gives us the
best possible extension, i.e, the best possible diversity
achievable among solutions that contain the guessed
polygon. All that remains is to pick the best choice
among all choices of polygons that contain the first
point. The overall running time is polynomially
bounded because we only have to worry about poly-
gons with a constant number of vertices. We make this
argument more explicit in the Appendix. We also note
that the running time of our algorithm is O(n7) since
the DP table has O(n2) indices and the computation at
each index is O(n5).

We now sketch the correctness of the dynamic pro-
gramming approach proposed in the context of The-
orem 3. Consider the subproblem given by the points
i, i + 1, . . . , j. Consider the space of all solutions S that
have the property guaranteed by Lemma 3 and parti-
tion it into two parts: S4 ⊆ S consists of all solutions
where the point i belongs to a polygon with four sides;
and S6 ⊆ S consists of all solutions where the point i
belongs to a polygon with six sides.

Let A⋆ and B⋆ denote arbitrary optimal solutions
among all the solutions in S4 and S6, respectively. Fur-
ther, let a⋆ and b⋆ denote the corresponding costs. Note
that the cost of the optimal solution for this subproblem
is max(a⋆, b⋆).

We now argue that α(i, j) correctly computes the value
of a⋆. Once again, for every choice of points i < p1 <

p2 < p3 ≤ j in (
Qi+1,j

3 ), let S4[[p1, p2, p3]] denote the set

Figure 4: An example of how a base polygon divides
the subproblem on Qi,j further into four smaller in-
stances.

of all solutions in S4 where the polygon containing the
point i also contains the points p1, p2, p3. Note that if
it is not the case that p1 − i is odd and p2 − p1 is odd
and p3 − p2 is odd , then S4[[p1, p2, p3]] = ∅, since for
any such combination of points, there is no valid so-
lution containing the polygon formed by the points
{i, p1, p2, p3}. For any valid combination, we know
that the best solution in S4[[p1, p2, p3]] is captured
by taking the union of the best solutions for the fol-
lowing subinstances: (i + 1, p1 − 1), (p1 + 1, p2 − 1),
(p2 + 1, p3 − 1), and (p3 + 1, j) corresponding to the
four “chunks” of points “carved out” by the polygon
(see Figure 4); along with the polygon formed by the
points {i, p1, p2, p3}. Note that there are no points in-
side the polygon whose vertices are {i, p1, p2, p3} since
the original point set is in convex position. Further,
note that it is reasonable to consider these subinstances
independently since no solution that contains the poly-
gon formed by {i, p1, p2, p3} will contain a polygon
with points from two distinct segments among the seg-
ments listed above. The proof can now be completed
using a standard strong induction argument, and we
defer the details to the full version.

4 Concluding Remarks

We introduced the notion of diverse non-crossing
matchings. While we show that DIVERSE COMPATIBLE
NCMS can be solved in polynomial time for points in
convex position, the complexity of the closely related
problem DIVERSE NCMS (where we drop the demand
for compatibility from the solution matchings) remains
open even for convex point sets. The complexity of all
problems considered for more general inputs remains
open. We also believe that exploring other notions of
diversity, based on either different aggregation func-
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Figure 5: An example of how a base polygon divides
the subproblem on Qi,j further into six smaller in-
stances.

tions (e.g, sum instead of minimum), or other notions
of distance (different from Euclidean), would also pose
interesting directions for future research. We also pro-
pose to study the problems proposed here for more
than two matchings.
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