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Abstract

Given a point set P in R?, the minimum enclosing spher-
ical (resp., cylindrical) shell problem is to find a sphere
(resp., a cylinder) best fitting P. We show that in the
single-pass streaming model, any algorithm for the min-
imum enclosing spherical/cylindrical shell problem with
an approximation factor better than d'/3/4 requires a
memory size exponential in d.

1 Introduction

Shape fitting is a fundamental problem in compu-
tational geometry, with various applications to ma-
chine learning, data mining, statistics, and computer
vision. The objective in the shape fitting problem
is to find a shape from a certain family of shapes,
best fitting a given point set. FExamples of geomet-
ric shape fitting problems include minimum enclosing
ball, width, minimum-radius enclosing cylinder, and
minimum-width enclosing spherical/cylindrical shell.

In this paper, we consider shape fitting problems in
the streaming model, where input points arrive one at
a time, and the algorithm has a limited storage, so it
cannot keep all the points received so far in memory.
Moreover, we are considering the problems in high di-
mensions, where the dimension, d, can be arbitrarily
large.

In fixed dimensions, a (14 ¢)-approximation for many
geometric shape fitting problems can be computed effi-
ciently in linear time using the idea of core-sets [1]. The
idea can be extended to the streaming model as well,
leading to efficient (1 + ¢)-approximation streaming al-
gorithms that require only 1/¢°(4) space [1, 4, 7].

In high dimensions, however, the above (1 + ¢)-factor
approximation algorithms are not applicable, due to
their exponential dependency in d. Nevertheless, there
are a few results on shape fitting in high-dimensional
streams. For the minimum enclosing ball problem,
Zarrabi-Zadeh and Chan [8] presented a simple 3/2-
approximation algorithm that works in any dimension,
using only O(d) space. Agarwal and Sharathkumar [2]
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presented another O(d)-space streaming algorithm with
an approximation factor of 1+T‘/§ +¢e =~ 1.37. The ap-
proximation factor of their algorithm was later improved
to 1.22 by Chan and Pathak [5], getting very close to the
lower bound of # ~ 1.207 known for the problem [2].
For the minimum enclosing cylinder problem, Chan [4]
gave an elegant (5 4 ¢)-approximation streaming algo-
rithm using only O(d) space. For the width problem,
Agarwal and Sharathkumar [2] proved a lower bound
of d*/3 /8 on the approximation factor of any streaming
algorithm for the problem whose memory size is sub-
exponential in d.

In this paper, we study two other important shape
fitting problems in high dimensions, namely the mini-
mum enclosing spherical shell and the minimum enclos-
ing cylindrical shell in the data stream model. We show
that any (randomized) streaming algorithms that ap-
proximates the minimum enclosing spherical/cylindrical
shell to within a factor better than d'/3/4 (with proba-
bility at least 2/3) requires a memory size exponential
in d.

To prove our lower bounds, we use the well-known
lower bound on the one-round communication complex-
ity of the index problem [6], in the same way used by
Agarwal and Sharathkumar [2]. However, technical de-
tails of our proofs are non-trivial, and require carefully
exploiting geometric properties of spherical/cylindrical
shells. To the best of our knowledge, the two problems
studied in this paper—despite being central in geomet-
ric shape fitting—have not been studied before in high-
dimensional streams. As such, this work is an impor-
tant step towards better understanding the limitations
of shape fitting in high-dimensional data streams.

2 Preliminaries

Given a point ¢ € R? and two positive real numbers
r1 and 7y such that r; < ra, the closed region between
two concentric spheres of radii r; and ry centered at ¢
is called a spherical shell. The width of the spherical
shell is defined as 79 — 1. Given a line ¢ in R? and two
positive real numbers r; and 75 such that r; < rg, the
closed region between two coaxial cylinders with axis ¢
and radii r; and rs is called a cylindrical shell. Likewise,
the value ro — rq is called the width of the cylindrical
shell. The minimum enclosing spherical (resp., cylindri-
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Figure 1: Two points p and ¢ on S4~1.

cal) shell problem is to find a minimum-width spherical
(resp., cylindrical) shell that encloses the whole input
point set.

Let S%~! be the a sphere in R? centered at origin.
Namely, S~! = {p € R?||jop|| = 1}, where o denotes
the origin. We call a point set P symmetric if for every
point p in P, —p is also in P. Given two points/vectors
w and v in R%, we denote by u - v the inner product of u
and v. We also denote by exp(z) the function e, where
e is the natural number. The following lemma, which is
stated in a slightly different form in [2], will be used to
derive our lower bounds.

Lemma 1 There is a symmetric point set K C S¢1
of size Q(exp(d'/?)) such that for every pair of distinct
points p,q € K, if ¢ # —p, then |p- q| < V2/d"/>.

Proof. Let p € S~ and 0 < § < 1. The hyperplane
at distance § from the origin and normal to p partitions
S9! into two parts. We denote the smaller part by
cap(p,d). Now, consider the point set K returned by
the following algorithm.

Algorithm 1 WELL-SEPARATED POINT SET

F«S1 K« o
while F # & do

pick an arbitrary point p in F

F  F\ (cap(p, v2/d/3) U cap(—p, v3/d'/%))
return K

Let p and ¢ be two points in K, such that ¢ # —p.
Suppose that p is added to K before ¢ by the algo-
rithm. Then, it is clear by our construction that ¢ is
at distance at most v/2/ d'/3 from the hyperplane pass-
ing through the origin and normal to p, which means
Ip-q| <V2/d*3. (See Figure 1.)

To analyze the size of K, let S(X) denote the area of
a surface X. It is well-known [3] that for any p € S¢-1
and any 0 < 6 <1,

W < exp(—do?/2).

Therefore, at any iteration of the algorithm, no more
than 2/ exp(d'/3) of the surface of S*~! is removed from
F. Hence, |K| = Q(exp(d'/?)). O

3 Spherical Shell

In this section, we provide a lower bound on the ap-
proximation factor of any streaming algorithm for the
minimum enclosing spherical shell problem whose stor-
age size is sub-exponential in d. The following lemma
provides the main ingredient of our proof.

Lemma 2 Let {i1,...,uUq} be a set of orthogonal unit
vectors in R®. Then any spherical shell that encloses the
point set P = {o, iﬁl}UUfZQ{i\/Eﬂi, +(Vd+2)i,} has
width at least g

Proof. Suppose that the minimum spherical shell en-
closing P is centered at a point a = (ay,...,aq), where
a; = a-u;. Due to symmetry of P around the origin, we
can assume without loss of generality that a; > 0 for all
i € {1,...,d}. Moreover, by symmetry of definition of
P on dimensions 2 to d, we can assume without loss of
generality that as > a; for all i € {3,...,d}, i.e., ay is
the biggest number among as, ...,aqs. We consider the
following four cases:

(i) a1 < asvd and ag > 1
(ii) a1 < asvd and ag < 1
(iii) a1 > asvd and a3 > 1
(iv) a1 > asvd and a; < 1

Let w,(P) denote the width of the minimum spher-
ical shell centered at a enclosing P, i.e., w,(P) =
maxpep ||pal| — minyep [|pall. To prove the lemma, it
is enough to show that in all the above four cases,
wqe(P) > g We will prove the first case here, and
leave the rest to the appendix. By the definition of
wq (P) we have

we (P)

Y

w, ({£Vdi})

.
—\/af+(a2—ﬁ)2+a§+--~+a§

= \/E a2 +d+2aVd

_\/21 105 2 d+ 2a9Vd.

Note that the function f(z) = V& + ¢—+/x is decreasing
in z, for all positive ¢. Therefore, in the above expres-
sion, if we increase both values under the roots by the

+ (a2 +Vd)2 +ai+ - +d?
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same amount, the expression becomes smaller. There-
fore,

we(P) > \/Qda§+d+4a2\f— 2da2 +d
asa2f>a1 and ag > a; fori=3,...,d)
> \/3da2+4a2\f \/3da3 (as ag > 1)
a2\/E
> V3 \/da§+a2\/g+ 3 —y/da3
>

ﬁ(,/dag+w+;_@)

(as ag,d > 1 and agxf/?) > 1/4)

= U ag\[-l- \/c;

2 )

which implies wg(P) > ? in Case (i). The proof of the
other three cases are provided in the appendix. 0

Now, we are ready to provide our lower bound. Sup-

pose A is a streaming algorithm that approximates the
minimum enclosing spherical shell within a factor bet-
ter than d'/3 /4 with probability at least 2/3. We reduce
from the following problem in communication complex-
ity:
Index Problem. Alice has a binary string aj ...ag
and Bob has an index i € {1,...,k}. Alice can send
Bob a message to inform him about her string and then
Bob should determine whether a; is 0 or 1.

It is known [6] that in any algorithm for the index
problem that succeeds with probability at least 2/3, the
size of the message sent by Alice to Bob is Q(k). By
reducing from the index problem to the minimum en-
closing spherical shell problem, we will show that the
space required by A is Q(exp(d/?)).

Let d be the smallest integer such that k < exp(d'/3).
By Lemma 1, it is possible to choose a set K of k pair
of well-separated points on S?~!. Let KT be the subset
of points of K lying on the hemisphere z; > 0, and
let f:{1,...,k} = KT be a one-to-one function. We
assume that Alice and Bob are both aware of f and K,
as these are independent of Alice’s string or Bob’s index.
Alice gives the points {£f(j)|a; = 1} to A and then
sends the working space of A to Bob. Bob then gives
the set of points {o} U U?ZQ{:I:\/E@_[]-7 +(Vd + 2)i;} to
A, where o is the origin and {ds,..., 44} is a set of
orthogonal unit vectors which are all orthogonal to the
point f(4). If the output of A is a spherical shell of width

less than L , then Bob claims that a; = 0, otherwise, he

claims a; = 1. We show that with probability at least
2/3 he is true in his claim.

Suppose a; = 0. In this case, all of the points that
Alice and Bob have given to A are at most at distance
V/2/d*? from the hyperplane passing through the ori-
gin and normal to the point f(¢). Therefore, a spherical
shell centered at a point along f(i) lying at infinity en-
closes all of the points with a width of at most 2\/§/d1/3.

Hence, due to the approximation factor of A, the out-

put will be a spherical shell of width less than L , with

probability at least 2/3.

On the other hand, if a; = 1, due to Lemma 2, there
is no spherical shell of width less than ‘Qf that encloses
Bob’s points plus the pair of points £f(¢). Thus, the
output that Bob receives has width at least %

Therefore, the protocol presented for the index prob-
lem works with probability at least 2/3. Hence, the
size of the working space that Alice sends to Bob is
Q(k) = Q(exp(d/?)). We can conclude the following

theorem.

Theorem 3 Given a set P of n points in RY, any
streaming algorithm that approximates the minimum
enclosing spherical shell of P to within a factor bet-
ter than d'/3/4 with probability at least 2/3 requires
Q(min{n, exp(d*/?)}) space.

4 Cylindrical Shell

In this section, we prove a lower bound on the approxi-
mation factor of any streaming algorithm for the mini-
mum enclosing cylindrical shell problem whose memory
size is sub-exponential in d. Again, we start with the
following crucial lemma.

Lemma 4 Let {iu1,...,uq} be a set of orthogonal unit
vectors in R®. Then any cylindrical shell that encloses
the point set P = {o,+i;} U ngz{i\/gﬁi} has width
at least ?

Proof. Let ¢ be a line in R?, a be a point on ¢, and
be a unit vector in the direction of ¢. Then, any point
on ¢ can be represented by « + t7i, where t is a real
number. Note that such a presentation is not unique.
In particular, we can choose the point « such that « is
orthogonal to 7i. This condition does not lose generality,
as every point a+ 17 can be rewritten as o’ +t'7, where
o =a— ﬁﬁ =1+ ‘iz, and o' is orthogonal to
. Henceforth we assume that the standard form of
presenting a line has the above condition.

Now, let £ = {a+tii}, where « is orthogonal to 7. We
write a and 7 as (ai,...,aq) and (nq,...,n4), respec-
tively, where a; = « - 4; and n; = 7 - 4;. The perpen-
dicularity condition ensures that Z?Zl a;n; = 0. Let
dist(p, £) denote the distance of a point p to the line /.
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LT dist(p, £)

(p—a)-i

Figure 2: Computing dist(p, £).

Likewise, we write p as (p1, ...
By the Pythagorean theorem,

7pd)a where bi =Dp- ﬂ:i'

dist’(p,0) = |p—af>—((p—a)-7)* (sce Fig. 2)
d d d 2
= Z (pi — %)2 - (sznz - Z ai”i)
. Lo\
= Z (pi — ai)? - (ZPJM)
i=1 i=1

In particular, when p = pi i, we have:

d
distz(p7 0) = Z a? + pi — 2akpr — Pinﬁ (1)

i=1

Note that the minimum width of a cylindrical
shell with axis ¢ enclosing point set P is equal to
maxpe p dist(p, £) — miny,ep dist(p, £). We denote this
value by wy(P). Suppose that ¢ is the axis of a
minimum-width cylindrical shell enclosing P. We can
assume without loss of generality that a; > 0 for all
1 =1,...,d, and ag > q; for all i = 3,...,d, due to
symmetry of P. We consider two cases: (i) a; > agV/d,
and (ll) aq S CLQ\/Zl.

To prove the first case, we first show that n? < %
Since 2?21 a;n; = 0, we have

d
E ain;
i=2

a1|n1| =

d
< Z%‘W\-
=2

Therefore,

d

d
a; 1
niyl < —In;| < — n;l.
ml < 3ol < 25 I

=2

By the Cauchy-Schwarz inequality, for any two vectors
wand v, |u-v|? < (u-u)(v-v). As such,

d 2 d
1 d—1
CERT0S EE o
1=2 =2

Thus,

. . . d—
which implies n% < Tfl <
we(P) > dist(—uy,£) — dist(o, ¢)

= \/Egzla? +2a1 + (1 —n)

. Now,

N

(by (1))

_ d
i=1%;

1
\/Zf_laf + 2a1 + 3~ \/Zleag

Za% +2a1 + = — Qa%

£

v

v
]

(as a1 > a;Vd, for i =2,....d)

= \/§< a%+a1+—a1>

:

-

which completes the proof of Case (i). The second case
is proved in the appendix. O

= V2 <a1+

N | =

V2

2

Now, suppose A is a streaming algorithm that approxi-
mates the minimum enclosing cylindrical shell to within
a factor better than d'/? /4 with probability at least 2/3.
Like the previous section, we use a reduction from the
index problem. Alice gives the points {£f(j)|a; = 1}
to A, and sends the working space to Bob. Bob then
gives the point set {o} U U?:Q{:I:\/gﬁj} to A, where
{ta,...,Uq} is a set of orthogonal unit vectors which
are all orthogonal to f (7).

Let H be the hyperplane passing through the origin
and normal to f(¢). If a; = 0, all of the points given
to A are at most at distance \/§/d1/3 from H. In this
case, a cylindrical shell with an axis parallel to H in-
finitely far from H encloses all the input points with
width 2v/2/d*/3. Thus, according to the approxima-
tion factor of A, the output of A is a cylindrical shell
of width less than g On the other hand, if a; = 1,
then by Lemma 4, there is no cylindrical shell of width
less than g
points £ f(7).

Therefore, Bob can check the output shell, and report
a; = 0, if the width is less than %, and report a; = 1,
otherwise. This solves the index problem with proba-
bility at least 2/3. Therefore, the working space of A

must be Q(k) = Q(exp (d/?)).

that encloses Bob’s points plus the pair of

Theorem 5 Given a set P of n points in R, any
streaming algorithm that approximates the minimum en-
closing cylindrical shell of P to within a factor bet-
ter than d'/3/4 with probability at least 2/3 requires
Q(min{n, exp(d*/?)}) space.
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Case (ii). We first prove that d(1 — n3) > 3. Since

d
i aing =0, we have

d
ainy + E a;n;
i=3

d
< ar|ni| + Zaz|nz|
i=3

algorithm for minimum enclosing balls. In Proceedings azfnz| =
of the 18th Canadian Conference on Computational Ge-
ometry, pages 139-142, 2006. Therefore,
A di a d . d
ppendix Ina| < a—1|m|+za—’|m| < Vdlna |+ [nal,
2 — a2 =
Proof of Lemma 2 - ’
Case (ii). and hence,
N d d 2
wa(P) 2 wa({o.(Vi+2)i}) o<l 2 + (Z |m|>
i=3 i=3
= Vel +(Va+2) — @) i+t a3 ) ‘
2 2 2 2

\/a%+(\/&+a2)2+a§+~-+a§

Y

(2d —2) (n? + an) .

—\/ 2 a
= /3a 4 2Vday +d - /30 a2 )
1 2 _ 2 _ 2 _ _
> \/Qda§+2\/ga2+§—\/2da§ 2+ (2d = 2)nz < (2d 2);”1 2d=2.

Therefore, n3 < %, and hence, d(l —n%) > 2dd71 >

We can thus conclude that

Thus,

D=

ol

Case (iii).
wa(P) > wa({£u1})
N PR e — = VSl 2V - ) O

1
—\/(a1—1)2—|—a§+---+a§ > \/Qda§+2agﬂ+§f\/2da§

= \/Eleaf—i—Qal—i—l—\/Zlea?—2a1+1 —

we(P) > dist(—Vdio, £) — dist(o, £)

oI

> 1/2a? +4ay — y/2a2
1
> \/i(\/a%—kx/im—i—i—al)
= 1
2
> V2
2



