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Abstract

Given a point set P in Rd, the minimum enclosing spher-
ical (resp., cylindrical) shell problem is to find a sphere
(resp., a cylinder) best fitting P . We show that in the
single-pass streaming model, any algorithm for the min-
imum enclosing spherical/cylindrical shell problem with
an approximation factor better than d1/3/4 requires a
memory size exponential in d.

1 Introduction

Shape fitting is a fundamental problem in compu-
tational geometry, with various applications to ma-
chine learning, data mining, statistics, and computer
vision. The objective in the shape fitting problem
is to find a shape from a certain family of shapes,
best fitting a given point set. Examples of geomet-
ric shape fitting problems include minimum enclosing
ball, width, minimum-radius enclosing cylinder, and
minimum-width enclosing spherical/cylindrical shell.

In this paper, we consider shape fitting problems in
the streaming model, where input points arrive one at
a time, and the algorithm has a limited storage, so it
cannot keep all the points received so far in memory.
Moreover, we are considering the problems in high di-
mensions, where the dimension, d, can be arbitrarily
large.

In fixed dimensions, a (1+ε)-approximation for many
geometric shape fitting problems can be computed effi-
ciently in linear time using the idea of core-sets [1]. The
idea can be extended to the streaming model as well,
leading to efficient (1 + ε)-approximation streaming al-
gorithms that require only 1/εO(d) space [1, 4, 7].

In high dimensions, however, the above (1 + ε)-factor
approximation algorithms are not applicable, due to
their exponential dependency in d. Nevertheless, there
are a few results on shape fitting in high-dimensional
streams. For the minimum enclosing ball problem,
Zarrabi-Zadeh and Chan [8] presented a simple 3/2-
approximation algorithm that works in any dimension,
using only O(d) space. Agarwal and Sharathkumar [2]
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presented another O(d)-space streaming algorithm with

an approximation factor of 1+
√
3

2 + ε ≈ 1.37. The ap-
proximation factor of their algorithm was later improved
to 1.22 by Chan and Pathak [5], getting very close to the

lower bound of 1+
√
2

2 ≈ 1.207 known for the problem [2].
For the minimum enclosing cylinder problem, Chan [4]
gave an elegant (5 + ε)-approximation streaming algo-
rithm using only O(d) space. For the width problem,
Agarwal and Sharathkumar [2] proved a lower bound
of d1/3/8 on the approximation factor of any streaming
algorithm for the problem whose memory size is sub-
exponential in d.

In this paper, we study two other important shape
fitting problems in high dimensions, namely the mini-
mum enclosing spherical shell and the minimum enclos-
ing cylindrical shell in the data stream model. We show
that any (randomized) streaming algorithms that ap-
proximates the minimum enclosing spherical/cylindrical
shell to within a factor better than d1/3/4 (with proba-
bility at least 2/3) requires a memory size exponential
in d.

To prove our lower bounds, we use the well-known
lower bound on the one-round communication complex-
ity of the index problem [6], in the same way used by
Agarwal and Sharathkumar [2]. However, technical de-
tails of our proofs are non-trivial, and require carefully
exploiting geometric properties of spherical/cylindrical
shells. To the best of our knowledge, the two problems
studied in this paper—despite being central in geomet-
ric shape fitting—have not been studied before in high-
dimensional streams. As such, this work is an impor-
tant step towards better understanding the limitations
of shape fitting in high-dimensional data streams.

2 Preliminaries

Given a point c ∈ Rd and two positive real numbers
r1 and r2 such that r1 < r2, the closed region between
two concentric spheres of radii r1 and r2 centered at c
is called a spherical shell. The width of the spherical
shell is defined as r2 − r1. Given a line ` in Rd and two
positive real numbers r1 and r2 such that r1 < r2, the
closed region between two coaxial cylinders with axis `
and radii r1 and r2 is called a cylindrical shell. Likewise,
the value r2 − r1 is called the width of the cylindrical
shell. The minimum enclosing spherical (resp., cylindri-
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Figure 1: Two points p and q on Sd−1.

cal) shell problem is to find a minimum-width spherical
(resp., cylindrical) shell that encloses the whole input
point set.

Let Sd−1 be the a sphere in Rd centered at origin.
Namely, Sd−1 =

{
p ∈ Rd | ‖op‖ = 1

}
, where o denotes

the origin. We call a point set P symmetric if for every
point p in P , −p is also in P . Given two points/vectors
u and v in Rd, we denote by u · v the inner product of u
and v. We also denote by exp(x) the function ex, where
e is the natural number. The following lemma, which is
stated in a slightly different form in [2], will be used to
derive our lower bounds.

Lemma 1 There is a symmetric point set K ⊆ Sd−1
of size Ω(exp(d1/3)) such that for every pair of distinct
points p, q ∈ K, if q 6= −p, then |p · q| ≤

√
2/d1/3.

Proof. Let p ∈ Sd−1 and 0 < δ ≤ 1. The hyperplane
at distance δ from the origin and normal to p partitions
Sd−1 into two parts. We denote the smaller part by
cap(p, δ). Now, consider the point set K returned by
the following algorithm.

Algorithm 1 Well-Separated Point Set

1: F ← Sd−1, K ← ∅
2: while F 6= ∅ do
3: pick an arbitrary point p in F
4: K ← K ∪ {p,−p}
5: F ← F \ (cap(p,

√
2/d1/3) ∪ cap(−p,

√
2/d1/3))

6: return K

Let p and q be two points in K, such that q 6= −p.
Suppose that p is added to K before q by the algo-
rithm. Then, it is clear by our construction that q is
at distance at most

√
2/d1/3 from the hyperplane pass-

ing through the origin and normal to p, which means
|p · q| ≤

√
2/d1/3. (See Figure 1.)

To analyze the size of K, let S(X) denote the area of
a surface X. It is well-known [3] that for any p ∈ Sd−1
and any 0 ≤ δ ≤ 1,

S(cap(p, δ))

S(Sd−1)
≤ exp(−dδ2/2).

Therefore, at any iteration of the algorithm, no more
than 2/ exp(d1/3) of the surface of Sd−1 is removed from
F . Hence, |K| = Ω(exp(d1/3)). �

3 Spherical Shell

In this section, we provide a lower bound on the ap-
proximation factor of any streaming algorithm for the
minimum enclosing spherical shell problem whose stor-
age size is sub-exponential in d. The following lemma
provides the main ingredient of our proof.

Lemma 2 Let {~u1, . . . , ~ud} be a set of orthogonal unit
vectors in Rd. Then any spherical shell that encloses the
point set P = {o,±~u1}∪

⋃d
i=2{±

√
d~ui,±(

√
d+2)~ui} has

width at least
√
2
2 .

Proof. Suppose that the minimum spherical shell en-
closing P is centered at a point a = (a1, . . . , ad), where
ai = a ·~ui. Due to symmetry of P around the origin, we
can assume without loss of generality that ai ≥ 0 for all
i ∈ {1, . . . , d}. Moreover, by symmetry of definition of
P on dimensions 2 to d, we can assume without loss of
generality that a2 ≥ ai for all i ∈ {3, . . . , d}, i.e., a2 is
the biggest number among a2, . . . , ad. We consider the
following four cases:

(i) a1 ≤ a2
√
d and a2 ≥ 1

(ii) a1 ≤ a2
√
d and a2 ≤ 1

(iii) a1 ≥ a2
√
d and a1 ≥ 1

(iv) a1 ≥ a2
√
d and a1 ≤ 1

Let wa(P ) denote the width of the minimum spher-
ical shell centered at a enclosing P , i.e., wa(P ) =
maxp∈P ‖pa‖ − minp∈P ‖pa‖. To prove the lemma, it
is enough to show that in all the above four cases,

wa(P ) ≥
√
2
2 . We will prove the first case here, and

leave the rest to the appendix. By the definition of
wa(P ) we have

wa(P ) ≥ wa

(
{±
√
d~u2}

)
=

√
a21 + (a2 +

√
d)2 + a23 + · · ·+ a2d

−
√
a21 + (a2 −

√
d)2 + a23 + · · ·+ a2d

=

√
Σdi=1a

2
i + d+ 2a2

√
d

−
√

Σdi=1a
2
i − d+ 2a2

√
d.

Note that the function f(x) =
√
x+ c−

√
x is decreasing

in x, for all positive c. Therefore, in the above expres-
sion, if we increase both values under the roots by the
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same amount, the expression becomes smaller. There-
fore,

wa(P ) ≥
√

2da22 + d+ 4a2
√
d−

√
2da22 + d

(as a2
√
d ≥ a1 and a2 ≥ ai for i = 3, . . . , d)

≥
√

3da22 + 4a2
√
d−

√
3da22 (as a2 ≥ 1)

≥
√

3

√da22 + a2
√
d+

a2
√
d

3
−
√
da22


≥
√

3

(√
da22 + a2

√
d+

1

4
−
√
da22

)
(as a2, d ≥ 1 and a2

√
d/3 > 1/4)

=
√

3

√(a2√d+
1

2

)2

−
√
da22


=

√
3

2
,

which implies wa(P ) ≥
√
2
2 in Case (i). The proof of the

other three cases are provided in the appendix. �

Now, we are ready to provide our lower bound. Sup-
pose A is a streaming algorithm that approximates the
minimum enclosing spherical shell within a factor bet-
ter than d1/3/4 with probability at least 2/3. We reduce
from the following problem in communication complex-
ity:

Index Problem. Alice has a binary string a1 . . . ak
and Bob has an index i ∈ {1, . . . , k}. Alice can send
Bob a message to inform him about her string and then
Bob should determine whether ai is 0 or 1.

It is known [6] that in any algorithm for the index
problem that succeeds with probability at least 2/3, the
size of the message sent by Alice to Bob is Ω(k). By
reducing from the index problem to the minimum en-
closing spherical shell problem, we will show that the
space required by A is Ω(exp(d1/3)).

Let d be the smallest integer such that k < exp(d1/3).
By Lemma 1, it is possible to choose a set K of k pair
of well-separated points on Sd−1. Let K+ be the subset
of points of K lying on the hemisphere x1 ≥ 0, and
let f : {1, . . . , k} → K+ be a one-to-one function. We
assume that Alice and Bob are both aware of f and K,
as these are independent of Alice’s string or Bob’s index.
Alice gives the points {±f(j) | aj = 1} to A and then
sends the working space of A to Bob. Bob then gives
the set of points {o} ∪

⋃d
j=2{±

√
d~uj ,±(

√
d + 2)~uj} to

A, where o is the origin and {~u2, . . . , ~ud} is a set of
orthogonal unit vectors which are all orthogonal to the
point f(i). If the output of A is a spherical shell of width

less than
√
2
2 , then Bob claims that ai = 0, otherwise, he

claims ai = 1. We show that with probability at least
2/3 he is true in his claim.

Suppose ai = 0. In this case, all of the points that
Alice and Bob have given to A are at most at distance√

2/d1/3 from the hyperplane passing through the ori-
gin and normal to the point f(i). Therefore, a spherical
shell centered at a point along f(i) lying at infinity en-
closes all of the points with a width of at most 2

√
2/d1/3.

Hence, due to the approximation factor of A, the out-

put will be a spherical shell of width less than
√
2
2 , with

probability at least 2/3.
On the other hand, if ai = 1, due to Lemma 2, there

is no spherical shell of width less than
√
2
2 that encloses

Bob’s points plus the pair of points ±f(i). Thus, the

output that Bob receives has width at least
√
2
2 .

Therefore, the protocol presented for the index prob-
lem works with probability at least 2/3. Hence, the
size of the working space that Alice sends to Bob is
Ω(k) = Ω(exp(d1/3)). We can conclude the following
theorem.

Theorem 3 Given a set P of n points in Rd, any
streaming algorithm that approximates the minimum
enclosing spherical shell of P to within a factor bet-
ter than d1/3/4 with probability at least 2/3 requires
Ω(min{n, exp(d1/3)}) space.

4 Cylindrical Shell

In this section, we prove a lower bound on the approxi-
mation factor of any streaming algorithm for the mini-
mum enclosing cylindrical shell problem whose memory
size is sub-exponential in d. Again, we start with the
following crucial lemma.

Lemma 4 Let {~u1, . . . , ~ud} be a set of orthogonal unit
vectors in Rd. Then any cylindrical shell that encloses
the point set P = {o,±~u1} ∪

⋃d
i=2{±

√
d~ui} has width

at least
√
2
2 .

Proof. Let ` be a line in Rd, α be a point on `, and ~n
be a unit vector in the direction of `. Then, any point
on ` can be represented by α + t~n, where t is a real
number. Note that such a presentation is not unique.
In particular, we can choose the point α such that α is
orthogonal to ~n. This condition does not lose generality,
as every point α+ t~n can be rewritten as α′+ t′~n, where
α′ = α − α·~n

~n·~n~n, t′ = t + α·~n
~n·~n , and α′ is orthogonal to

~n. Henceforth, we assume that the standard form of
presenting a line has the above condition.

Now, let ` = {α+t~n}, where α is orthogonal to ~n. We
write α and ~n as (a1, . . . , ad) and (n1, . . . , nd), respec-
tively, where ai = α · ~ui and ni = ~n · ~ui. The perpen-
dicularity condition ensures that

∑d
i=1 aini = 0. Let

dist(p, `) denote the distance of a point p to the line `.
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Figure 2: Computing dist(p, `).

Likewise, we write p as (p1, . . . , pd), where pi = p · ~ui.
By the Pythagorean theorem,

dist2(p, `) = |p− α|2 − ((p− α) · ~n)
2

(see Fig. 2)

=

d∑
i=1

(pi − ai)2 −

(
d∑
i=1

pini −
d∑
i=1

aini

)2

=

d∑
i=1

(pi − ai)2 −

(
d∑
i=1

pini

)2

In particular, when p = pk~uk, we have:

dist2(p, `) =

d∑
i=1

a2i + p2k − 2akpk − p2kn2k (1)

Note that the minimum width of a cylindrical
shell with axis ` enclosing point set P is equal to
maxp∈P dist(p, `) − minp∈P dist(p, `). We denote this
value by w`(P ). Suppose that ` is the axis of a
minimum-width cylindrical shell enclosing P . We can
assume without loss of generality that ai ≥ 0 for all
i = 1, . . . , d, and a2 ≥ ai for all i = 3, . . . , d, due to
symmetry of P . We consider two cases: (i) a1 ≥ a2

√
d,

and (ii) a1 ≤ a2
√
d.

To prove the first case, we first show that n21 ≤ 1
2 .

Since
∑d
i=1 aini = 0, we have

a1|n1| =

∣∣∣∣∣
d∑
i=2

aini

∣∣∣∣∣ ≤
d∑
i=2

ai|ni|.

Therefore,

|n1| ≤
d∑
i=2

ai
a1
|ni| ≤

1√
d

d∑
i=2

|ni|.

By the Cauchy-Schwarz inequality, for any two vectors
u and v, |u · v|2 ≤ (u · u)(v · v). As such,

n21 ≤
1

d

(
d∑
i=2

|ni|

)2

≤ d− 1

d

d∑
i=2

n2i .

Thus,

n21 +
d− 1

d
n21 ≤

d− 1

d

d∑
i=1

n2i =
d− 1

d
,

which implies n21 ≤ d−1
2d−1 ≤

1
2 . Now,

w`(P ) ≥ dist(−~u1, `)− dist(o, `)

=
√

Σdi=1a
2
i + 2a1 + (1− n21) (by (1))

−
√

Σdi=1a
2
i

≥
√

Σdi=1a
2
i + 2a1 +

1

2
−
√

Σdi=1a
2
i

≥
√

2a21 + 2a1 +
1

2
−
√

2a21

(as a1 ≥ ai
√
d, for i = 2, . . . , d)

=
√

2

(√
a21 + a1 +

1

4
− a1

)

=
√

2

√(a1 +
1

2

)2

− a1


=

√
2

2
,

which completes the proof of Case (i). The second case
is proved in the appendix. �

Now, suppose A is a streaming algorithm that approxi-
mates the minimum enclosing cylindrical shell to within
a factor better than d1/3/4 with probability at least 2/3.
Like the previous section, we use a reduction from the
index problem. Alice gives the points {±f(j) | aj = 1}
to A, and sends the working space to Bob. Bob then
gives the point set {o} ∪

⋃d
j=2{±

√
d~uj} to A, where

{~u2, . . . , ~ud} is a set of orthogonal unit vectors which
are all orthogonal to f(i).

Let H be the hyperplane passing through the origin
and normal to f(i). If ai = 0, all of the points given
to A are at most at distance

√
2/d1/3 from H. In this

case, a cylindrical shell with an axis parallel to H in-
finitely far from H encloses all the input points with
width 2

√
2/d1/3. Thus, according to the approxima-

tion factor of A, the output of A is a cylindrical shell

of width less than
√
2
2 . On the other hand, if ai = 1,

then by Lemma 4, there is no cylindrical shell of width

less than
√
2
2 that encloses Bob’s points plus the pair of

points ±f(i).
Therefore, Bob can check the output shell, and report

ai = 0, if the width is less than
√
2
2 , and report ai = 1,

otherwise. This solves the index problem with proba-
bility at least 2/3. Therefore, the working space of A
must be Ω(k) = Ω(exp (d1/3)).

Theorem 5 Given a set P of n points in Rd, any
streaming algorithm that approximates the minimum en-
closing cylindrical shell of P to within a factor bet-
ter than d1/3/4 with probability at least 2/3 requires
Ω(min{n, exp(d1/3)}) space.
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Appendix

Proof of Lemma 2

Case (ii).

wa(P ) ≥ wa

(
{o, (
√
d + 2)~u2}

)
=

√
a2
1 + ((

√
d + 2)− a2)2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

≥
√

a2
1 + (

√
d + a2)2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

=

√
Σd

i=1a
2
i + 2

√
da2 + d−

√
Σd

i=1a
2
i

≥
√

2da2
2 + 2

√
da2 +

1

2
−
√

2da2
2

=

√
2

2
.

Case (iii).

wa(P ) ≥ wa({±~u1})

=
√

(a1 − (−1))2 + a2
2 + · · ·+ a2

d

−
√

(a1 − 1)2 + a2
2 + · · ·+ a2

d

=
√

Σd
i=1a

2
i + 2a1 + 1−

√
Σd

i=1a
2
i − 2a1 + 1

≥
√

2a2
1 + 4a1 −

√
2a2

1

≥
√

2(

√
a2
1 +
√

2a1 +
1

2
− a1)

= 1

>

√
2

2
.

Case (iv).

wa(P ) ≥ wa

(
{o,−

√
d~u2}

)
=

√
a2
1 + (a2 − (−

√
d))2 + a2

3 + · · ·+ a2
d

−
√

Σd
i=1a

2
i

=

√
Σd

i=1a
2
i + 2

√
da2 + d−

√
Σd

i=1a
2
i

≥
√

2a2
1 + d−

√
2a2

1

≥
√

2 + d−
√

2,

which is at least
√
2
2

, for all d > 2. �

Proof of Lemma 4

Case (ii). We first prove that d(1 − n2
2) ≥ 1

2
. Since∑d

i=1 aini = 0, we have

a2|n2| =

∣∣∣∣∣a1n1 +

d∑
i=3

aini

∣∣∣∣∣ ≤ a1|n1|+
d∑

i=3

ai|ni|.

Therefore,

|n2| ≤
a1

a2
|n1|+

d∑
i=3

ai

a2
|ni| ≤

√
d|n1|+

d∑
i=3

|ni|,

and hence,

n2
2 ≤ dn2

1 +

d∑
i=3

2
√
d|n1‖ni|+

(
d∑

i=3

|ni|

)2

≤ dn2
1 +

d∑
i=3

(
n2
1 + dn2

i

)
+ (d− 2)

d∑
i=3

n2
i

= (2d− 2)

(
n2
1 +

d∑
i=3

n2
i

)
.

Thus,

n2
2 + (2d− 2)n2

2 ≤ (2d− 2)

d∑
i=1

n2
i = 2d− 2.

Therefore, n2
2 ≤ 2d−2

2d−1
, and hence, d

(
1− n2

2

)
≥ d

2d−1
≥ 1

2
.

We can thus conclude that

w`(P ) ≥ dist(−
√
d~u2, `)− dist(o, `)

=

√
Σd

i=1a
2
i + 2a2

√
d + d(1− n2

1)−
√

Σd
i=1a

2
i

≥
√

2da2
2 + 2a2

√
d +

1

2
−
√

2da2
2

=

√
2

2
. �


