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On the Biplanar and k-Planar Crossing Numbers
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Abstract

The biplanar crossing number of a graph G is the min-
imum number of crossings over all possible drawings of
the edges of G in two disjoint planes. We present new
bounds on the biplanar crossing number of complete
graphs and complete bipartite graphs. In particular, we
prove that the biplanar crossing number of complete bi-
partite graphs can be approximated to within a factor
better than 3, improving over the best previously known
approximation factor of 4.03. For complete graphs, we
prove an approximation factor of 3.17, improving the
best previously known factor of 4.34. We provide sim-
ilar improved bounds for the k-planar crossing number
of complete graphs and complete bipartite graphs, for
any positive integer k.

1 Introduction

An embedding (or drawing) of a graph G in the Eu-
clidean plane is a mapping of the vertices ofG to distinct
points in the plane and a mapping of edges to smooth
curves between their corresponding vertices. A planar
embedding of a graph is a drawing of the graph in the
plane such that edges intersect only at their endpoints.
A graph admitting such a drawing is called planar. A
biplanar embedding of a graph G = (V,E) is a decom-
position of the graph into two graphs G1 = (V,E1) and
G2 = (V,E2) such that E = E1 ∪ E2 and E1 ∩ E2 = ∅,
together with planar embeddings of G1 and G2. In this
case, we call G biplanar. Biplanar embeddings are cen-
tral to the computation of thickness of graphs [13], with
applications to VLSI design [14]. It is well-known that
planarity can be recognized in linear time, while bipla-
narity testing is NP-complete [12].

Let cr(G) be the minimum number of edge crossings
over all drawings of G in the plane, and let crk(G) be
the minimum of cr(G1) + · · ·+ cr(Gk) over all possible
decompositions of G into k subgraphs G1, . . . , Gk. We
call cr(G) the crossing number of G, and crk(G) the k-
planar crossing number of G. Throughout this paper,
we only consider simple drawings for each subgraph Gi,
in which no two edges intersect more than once, and
no three edges intersect at a point (such drawings are
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sometimes called nice drawings). Moreover, we denote
by n the number of vertices, and by m the number of
edges of a graph.

Determining the crossing number of complete graphs
and complete bipartite graphs has been the subject
of extensive research over the past decades. In 1955,
Zarankiewicz [20] conjectured that the crossing number
cr(Kp,q) of the complete bipartite graph Kp,q is equal
to

Z(p, q) :=
⌊p

2

⌋ ⌊p− 1

2

⌋ ⌊q
2

⌋⌊q − 1

2

⌋
.

He also established a drawing with that many crossings.
In 1960, Guy [8] conjectured that the crossing number
cr(Kn) of the complete graph Kn is equal to

Z(n) :=
1

4

⌊n
2

⌋⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Both conjectures have remained open after more than
six decades. For the biplanar case, even formulating
such conjectures seems to be hard. As noted in [4], tech-
niques like embedding method and the bisection width
method which are useful for bounding ordinary crossing
numbers do not seem applicable to the biplanar case.

In 1971, Owens [14] described a biplanar embedding
of Kn with almost 7

24Z(n) crossings. The construc-
tion was later improved by Durocher et al. [7], but
the upper bound remained asymptotically the same.
In 2006, Czabarka et al. [4] presented a biplanar em-
bedding for Kp,q with about 2

9Z(p, q) crossings. They
also proved that cr2(Kn) ≥ n4/952 and cr2(Kp,q) ≥
p(p− 1)q(q − 1)/290. Shahrokhi et al. [17] generalized
these lower bounds to the k-planar case. Pach et al. [15]
proved that for every graph G and any positive integer
k, crk(G) ≤

(
2
k2 − 1

k3

)
cr(G). This includes as a special

case the inequality cr2(G) ≤ 3
8cr(G), originally proved

by Czabarka et al. [5].

Our results. In this paper, we present several new
bounds for approximating the biplanar and k-planar
crossing number of complete graphs and complete bi-
partite graphs. Given a positive integer k and a real
constant α ≥ 1, we say that crk(Kn) is approximated
to within a factor of α, if there is an upper bound f(n)
and a lower bound g(n) on the value of crk(Kn) such

that limn→∞
f(n)
g(n) ≤ α. Here, α is called an asymp-

totic approximation factor for crk(Kn). Similarly, we
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say that crk(Kp,q) is approximated to within a fac-
tor of α, if there is an upper bound f(p, q) and a
lower bound g(p, q) on the value of crk(Kp,q) such that

limp,q→∞
f(p,q)
g(p,q) exists and is no more than α. The re-

sults presented in this paper are summarized below.

• We prove that for all p, q ≥ 30, cr2(Kp,q) ≥
p(p− 1)q(q − 1)/213. This significantly improves
the best current lower bound of cr2(Kp,q) ≥
p(p− 1)q(q − 1)/290, due to Czabarka et al. [4].
Combined with the upper bound of cr2(Kp,q) ≤
2
9Z(p, q)+o(p2q2)1 [4], our result implies an asymp-
totic approximation factor of 2.96 for cr2(Kp,q), im-
proving over the best previously known asymptotic
factor of 4.03.

• For complete graphs, we show that cr2(Kn) ≥
n4

694 , improving the best current lower bound of

cr2(Kn) ≥ n4

952 [4]. Combined with the up-
per bound of cr2(Kn) ≤ 7

24Z(n) + o(n4) due to
Owens [14], we achieve an asymptotic approxima-
tion factor of 3.17 for cr2(Kn), improving the best
previously known approximation factor of 4.34.

• We extend our lower bounds for the biplanar cross-
ing number to the k-planar case, for any positive in-
teger k. In particular, we show that for sufficiently
large n, crk(Kn) ≥ n4/(232k2), improving the best
current lower bound of crk(Kn) ≥ n4/(432k2), due
to Shahrokhi et al. [17]. Considering the upper
bound of crk(Kn) ≤ 2

k2Z(n) due to Pach et al. [15],
we obtain an asymptotic approximation factor of
7.25 for crk(Kn), improving the best current ap-
proximation factor of 13.5 available for crk(Kn).

• Finally, we prove that for any positive inte-
ger k, crk(Kp,q) ≥ p(p− 1)q(q − 1)/(73.2k2),
improving the current lower bound of
crk(Kp,q) ≥ p(p− 1)q(q − 1)/(108k2) due to
Shahrokhi et al. [17]. Combined with the upper
bound of crk(Kn) ≤ 2

k2Z(p, q) [15], we obtain
an asymptotic approximation factor of 9.15 for
crk(Kp,q), improving the best current factor of
13.5.

A summary of the asymptotic approximation factors
for the biplanar and k-planar crossing number of Kn

and Kp,q is presented in Table 1.

2 Two Combinatorial Lemmas

We first present two combinatorial lemmas which are
the main ingredients of our proofs. Our first lemma
shows how we can derive a lower bound on the k-planar
crossing number of a graph G based on a lower bound

1By definition, f(x, y) = o(g(x, y)) if limx,y→∞
f(x,y)
g(x,y)

= 0.

Table 1: Summary of asymptotic approximation factors
for the biplanar and k-planar crossing numbers.

Crossing Asymptotic
Number Approx. Factor Ref.

cr2(Kp,q)
4.03 [4]
2.96 [This work]

cr2(Kn)
4.34 [4, 14]
3.17 [This work]

crk(Kp,q)
13.5 [15, 17]
9.15 [This work]

crk(Kn)
13.5 [15, 17]
7.25 [This work]

on the (ordinary) crossing number of that graph, if G
belongs to a family of graphs closed under edge removal,
such as simple graphs and bipartite graphs.

Lemma 1 Let G be a hereditary class of graphs which is
closed under removing edges. Let f(x) = αx, for some
positive constant α, and let g(x) be an arbitrary function
of x. If for every graph G in G, cr(G) ≥ f(m) − g(n),
then crk(G) ≥ f(m)− k · g(n) for all G ∈ G and for all
positive integers k.

Proof. Fix a graph G ∈ G. Let G =
⋃k

i=1Gk be
a decomposition of G into k subgraphs Gi = (V,Ei)

such that
∑k

i=1 cr(Gi) is minimum. By the heredi-
tary property of G, each Gi is a member of G, and
hence cr(Gi) ≥ f(mi)− g(n), where mi = |Ei|. There-

fore, crk(G) =
∑k

i=1 cr(Gi) ≥
∑k

i=1(f(mi) − g(n)) =

α
∑k

i=1mi −
∑k

i=1 g(n) = f(m)− k · g(n). �

Another combinatorial tool typically used for deriving
lower bounds on the crossing number of graphs is the
counting method (see, e.g., [9, 16]). We use the following
generalization of the counting method in this paper.

Lemma 2 (Counting method) Let G be a simple
graph that contains α copies of a subgraph H. If in
every k-planar drawing of G, each crossing of the edges
belongs to at most β copies of H, then

crk(G) ≥
⌈
α

β
crk(H)

⌉
.

Proof. Let D be a k-planar drawing of G, realizing
crk(G). For each of the α copies of H, D contains a
k-planar drawing with at least crk(H) crossings. Since
each crossing is counted at most β times by our assump-
tion, the lemma statement follows. Note that a ceiling
is put in the right-hand side of the inequality, because
crk(G) is always an integer. �
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3 Lower Bounds for Complete Bipartite Graphs

In this section, we provide new lower bounds on the
biplanar crossing number of complete bipartite graphs.
In particular, we improve the following bound due to
Czabarka et al. [4] which states that for all p, q ≥ 10,

cr2(Kp,q) ≥ p(p− 1)q(q − 1)

290
.

From Euler’s formula, we have cr(G) ≥ m−3(n−2) for
simple graphs, and cr(G) ≥ m − 2(n − 2) for bipartite
graphs. Using Lemma 1, we immediately get a lower
bound of cr2(G) ≥ m− 6(n− 2) for simple graphs, and
a lower bound of cr2(G) ≥ m − 4(n − 2) for bipartite
graphs.

To establish stronger lower bounds, we need to in-
corporate more powerful ingredients. A graph is called
k-planar, if it can be drawn in the plane in such a way
that each edge has at most k crossings. It is known
that every 1-planar drawing of a 1-planar graph has
at most n − 2 crossings [6]. (Note the difference be-
tween k-planar graphs, and k-planar crossing numbers.)
Removing one edge per crossing yields a planar graph.
Therefore, every 1-planar bipartite graph has at most
3n−6 edges. Karpov [10] proved that for every 1-planar
bipartite graph with at least 4 vertices, the inequality
m ≤ 3n − 8 holds. In a recent work, Angelini et al. [2]
proved that for every 2-planar bipartite graph we have
m ≤ 3.5n − 7. We use these results to obtain the fol-
lowing stronger lower bound.

Lemma 3 For every bipartite graph G with n ≥ 4,

crk(G) ≥ 3m− (8.5n− 19)k.

Proof. Let G be a bipartite graph with n vertices and
m edges. Fix a drawing of G with a minimum number
of crossings. If m > 3.5n−7, then by [2], there must be
an edge in the drawing with at least three crossings. We
repeatedly remove such an edge until we reach a draw-
ing with b3.5n− 7c edges. Now, by Karpov’s result,
there must be an edge in the drawing with at least two
crossings. We repeatedly remove such an edge until we
reach a drawing with 3n−8 edges. Let G′ be the bipar-
tite graph corresponding to the remaining drawing. We
know by Euler’s formula that cr(G′) ≥ (3n−8)−2(n−2).
Therefore,

cr(G) ≥ 3(m− b3.5n− 7c) + 2(b3.5n− 7c − (3n− 8))

+ (3n− 8)− 2(n− 2)

≥ 3m− b3.5n− 7c − (3n− 8)− 2(n− 2)

≥ 3m− 8.5n+ 19.

Applying Lemma 1 yields crk(G) ≥ 3m − (8.5n −
19)k. �

For complete bipartite graphs, Lemma 3 implies that
cr2(Kp,q) ≥ 3pq − 17(p + q) + 38, for all p, q ≥ 2. We
use Lemma 3 along with a counting argument to obtain
the following improved bound on cr2(Kp,q).

Theorem 4 For all p, q ≥ 30,

cr2(Kp,q) ≥ p(p− 1)q(q − 1)

213
.

Proof. Using the counting method (Lemma 2) for Kp,p

and Kp+1,p we have

cr2(Kp+1,p) ≥
⌈
p+ 1

p− 1
cr2(Kp,p)

⌉
.

This is because Kp+1,p contains p+1 copies of Kp,p, and
each crossing realized by two edges, belongs to at most(
p−1
p−2
)

= p− 1 of these copies. Using a similar argument
for Kp+1,p and Kp+1,p+1, we get

cr2(Kp+1,p+1) ≥
⌈
p+ 1

p− 1

⌈
p+ 1

p− 1
cr2(Kp,p)

⌉⌉
. (1)

By Lemma 3, cr2(K15,15) ≥ 203. Plugging into (1),
yields cr2(K16,16) ≥ 266, Now, we use the recurrence
relation (1) iteratively from p = 16 to 30 to get

cr2(K30,30) ≥ 3554. (2)

We can now apply the counting method on K30,30 and
Kp,q to obtain

cr2(Kp,q) ≥
(
p
30

)(
q
30

)(
p−2
28

)(
q−2
28

) cr2(K30,30)

=
p(p− 1)q(q − 1)

30× 29× 30× 29
cr2(K30,30).

Plugging (2) in the above inequality yields the theorem
statement. �

Remark. The exact value of the denominator obtained
in the above proof is around 212.97. One may continue
applying the recurrence relation (1) to obtain better
bounds for Kp,p, when p > 30. This leads to a slightly
improved constant in the denominator, but it does not
seem to reduce the constant below 212. Indeed, the de-
nominator seems to converge to a value around 212.4,
for large values of p.

4 Biplanar Crossing Number of Complete Graphs

We now consider the biplanar crossing number of com-
plete graphs. Czabarka et al. [4] used a probabilistic
method to prove that for large values of n,

cr2(Kn) ≥ n4

952
.

We improve this lower bound using the counting
method.
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Theorem 5 For all n ≥ 24,

cr2(Kn) ≥ n(n− 1)(n− 2)(n− 3)

698
.

Proof. We know from [1] that for every G with n ≥ 3,
cr(G) ≥ 5m− 139

6 (n− 2). Applying Lemma 1, we get

cr2(G) ≥ 5m− 139

3
(n− 2).

This in particular implies cr2(K25) ≥ 435. Now, we use
the counting method (Lemma 2) on K25 and Kn to get

cr2(Kn) ≥
(
n
25

)
cr2(K25)(
n−4
21

) ≥ n(n− 1)(n− 2)(n− 3)
25×24×23×22

435

,

which implies the theorem statement. �

We can slightly improve this result, using an iterative
counting method similar to what we used in the previous
section.

Theorem 6 For large values of n,

cr2(Kn) ≥ n4

694
.

Proof. Using the counting method (Lemma 2) for Kn

and Kn+1 we have

cr2(Kn+1) ≥
⌈

(n+ 1)cr2(Kn)

n− 3

⌉
. (3)

Starting from cr2(K25) ≥ 435, we use the recurrence
relation (3) iteratively from n = 25 to 50 to obtain
cr2(K50) ≥ 7965. Now, we use the counting method on
K50 and Kn to get

cr2(Kn) ≥
(
n
50

)
cr2(K50)(
n−4
46

)
≥ n(n− 1)(n− 2)(n− 3)

50×49×48×47
7965

≥ n(n− 1)(n− 2)(n− 3)

693.94
,

which implies cr2(Kn) ≥ n4

694 for sufficiently large n. �

5 k-Planar Crossing Number of Kn and Kp,q

In this section, we provide improved lower bounds on
the k-planar crossing number of complete bipartite and
complete graphs. Shahrokhi et al. [17] proved that for
any positive integer k, and sufficiently large integers p,
q, and n:

crk(Kp,q) ≥ p(p− 1)q(q − 1)

108k2
,

and

crk(Kn) ≥ n(n− 1)(n− 2)(n− 3)

432k2
.

We improve these results using the ideas developed in
Sections 3 and 4.

Theorem 7 For all p, q ≥ 8k + 2,

crk(Kp,q) ≥ p(p− 1)q(q − 1)

73.2k2
.

Proof. We apply the counting method (Lemma 2) on
K8k+2,8k+2 and Kp,q. By Lemma 3, for every bipartite
graph G, crk(G) ≥ 3m− (8.5n− 19)k. This yields

crk(K8k+2,8k+2) ≥ 56k2 + 43k + 12.

Hence,

crk(Kp,q) ≥
(

p
8k+2

)(
q

8k+2

)
crk(K8k+2,8k+2)(

p−2
8k

)(
q−2
8k

)
=
p(p− 1)q(q − 1)crk(K8k+2,8k+2)

(8k + 2)(8k + 1)(8k + 2)(8k + 1)

≥ p(p− 1)q(q − 1)
(8k+2)2(8k+1)2

56k2+43k+12

≥ p(p− 1)q(q − 1)
512
7 k2

,

which completes the proof. �

Theorem 8 For all n ≥ 14k − 3,

crk(Kn) ≥ n(n− 1)(n− 2)(n− 3)

232k2
.

Proof. We use the counting method (Lemma 2) for
K14k−3 and Kn. Recall that for every G with n ≥ 3,
cr(G) ≥ 5m − 139

6 (n − 2) [1]. Therefore, crk(G) ≥
5m− 139

6 (n− 2)k by Lemma 1. Thus,

crk(K14k−3) ≥ 497

3
k2 − 775

6
k + 30.

Therefore,

crk(Kn) ≥
(

n
14k−3

)
crk(K14k−3)(
n−4

14k−7
)

=
n(n− 1)(n− 2)(n− 3)crk(K14k−3)

(14k − 3)(14k − 4)(14k − 5)(14k − 6)
,

which implies the theorem. �

6 Conclusion

In this paper, we presented several improved bounds
on the biplanar and k-planar crossing number of com-
plete graphs and complete bipartite graphs. An obvious
open problem is whether the asymptotic approximation
factors presented in this paper can be further improved.
Obtaining similar bounds on the k-planar crossing num-
ber of other graph classes is an intriguing open problem.
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on k-planar crossing numbers. Computational Geome-
try, 68:2–6, 2018.
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