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Budgeted Steiner Networks: Three Terminals with Equal Path Weights

Mario Szegedy Jingjin Yu ∗

Abstract

Given a set of terminals in 2D/3D, the network with
the shortest total length that connects all terminals is
a Steiner tree. At the other extreme, with enough total
length budget, every terminal can be connected to every
other terminal via a straight line, yielding a complete
graph over all terminals that connects every pair of ter-
minals with a shortest path. In this work, we study
a generalization of Steiner trees, asking what happens
between these two extremes. For a given total length
budget, we seek a network structure that minimizes the
sum of the weighted distances between pairs of termi-
nals. Focusing on three terminals with equal pairwise
path weights, we characterize the full evolutionary path-
way between the Steiner tree and the complete graph,
which contains interesting intermediate structures.

1 Introduction

Consider a scenario in which three or more terminals
(e.g., the black nodes A,B, and C in Fig. 1) are to be
connected using a (graph) network, the total length of
which is limited.
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Figure 1: Evolution of a budgeted Steiner network over
three (black) terminals as the budget increases. (a)
Three terminals, A,B, and C, to be connected. (b)
The minimal non-trivial network that connects two ter-
minals. (c) The minimal network connecting all termi-
nals, which is a Steiner tree. (d) With sufficient budget,
the network is a complete graph. The question is, what
happens between (c) and (d)?

At one extreme, the minimum length budget re-
quired to connect all terminals corresponds to the total
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length of the edges of a Steiner tree over the terminals
(Fig. 1(c)). The well-known Steiner tree problem (STP)
seeks optimal network structures for connecting a set of
terminals while minimizing the total edge lengths [9,16].
STP generally asks for a minimally connected network,
resulting in a topology that is a tree. At the other ex-
treme, when there is no limit on the budget, the best
network structure is clearly a complete graph over all
terminals, where every pair of terminals are connected
through a straight edge. Such a network ensures the
shortest possible travel distance between any pair of ter-
minals. What if, however, the budget falls between the
two extremes?

To address the question, we propose the budgeted
Steiner network (BSN) problem/model. As a natural
generalization of STP, BSN seeks the best network struc-
ture for a given length budget to connect three or more
terminals, which reside in Rd for some d ≥ 1, such that
the sum of the (weighted) distances between pairs of
nodes are minimized. In this work, we mainly focus on
the case of three terminals with d = 2 (for three termi-
nals, d = 2 is the same as d ≥ 2).
The generalization immediately leads to rich and in-

teresting structures, even when only three terminals are
involved. As the budget increases, the network struc-
ture changes continuously between a Steiner tree and a
complete graph over the terminals, a few snapshots of
which are illustrated in Fig. 2.
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Figure 2: A spectrum of optimal Euclidean BSN network
structures (solid lines) for three terminals in a typical
setup, as the allowed budget increases.

As a summary of the full evolutionary pathway, if all
internal angles of a △ABC are smaller than 2π/3, the
Steiner tree over terminals A,B, and C has a Steiner
point that is internal to the triangle (e.g., the green dot
in Fig. 2). In this case, for a generic △ABC (that is,
△ABC is not an isosceles triangle), as the budget in-
creases past the length of the Steiner tree, an equilateral
triangle △A′B′C ′ will “grow” out of the Steiner point
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(Fig. 2(b)) and continues to expand until one vertex
of △A′B′C ′ meets one of the terminals, say A. Past
this point, △A′B′C ′ continues to expand as an isosceles
triangle with A′ = A fixed (Fig. 2(c)) as the budget con-
tinues to increase, until another vertex meets B or C,
say B. △A′B′C ′ then continue to expand with A′ = A
and B′ = B fixed, and C ′ moving toward C, until it
fully coincides with △ABC. If △ABC has one angle
equal to or larger than 2π/3, the evolutionary pathway
is similar but shortened; the corresponding BSN does not
have an initial phase containing an equilateral triangle.

The main contribution of this work is the rigorous
characterization of the precise evolution pathway of a
BSN as the available budget increases, for three arbi-
trarily located terminals. The analysis also implies an
efficient algorithm for computing the optimal BSN struc-
ture for any given budget.

2 Related Work

BSN problems are closely related to STPs [8,9,16], which
is a broad term covering a class of network optimization
problems. An STP seeks a minimal network that con-
nects a set of terminals (in Euclidean space or on graphs
that are possibly edge/vertex weighted). There are
four main cases: Euclidean, rectilinear, discrete/graph-
theoretic [6, 11], and phylogenetic [9]. Considering the
paper’s scope, we provide a brief literature review of
Euclidean STPs.
The Euclidean STP asks the following question: given

n terminals in 2D or 3D, find a network that connects all
n points with the minimum total length (the discussion
from now on will be limited to the 2D case). Obvi-
ously, the resulting network is a tree and may only have
straight line segments; it may also require additional in-
termediary nodes to be added. These added nodes are
called Steiner points. The study of Euclidean STP bears
with it a long history; the initial mathematical study
of the subject may be traced back to at least 1811 [3].
According to [12], key properties of Euclidean STP have
been established in (as early as) the 1930s by Jarńık and
Kössler [10]. An interconnecting network T is called a
Steiner tree if it satisfies the following conditions [9]:

(a) T is a tree,

(b) Any two edges of T meet at an angle of at least
2π/3, and

(c) Any Steiner point cannot be of degree 1 or 2.

These conditions turn out to be also relevant in our
study of the BSN problem. The solution to an Euclidean
STP must be a Steiner tree. Note that (b) implies a
node of the network has a maximum degree of 3. To-
gether, (b) and (c) imply that three edges must meet
at a Steiner point forming angles of 2π/3 in a pairwise

manner (see Fig. 1). Because Euclidean Steiner trees as-
sume minimal energy configurations, they also appear
in nature. Indeed, it is possible to employ related natu-
ral phenomena (e.g., using rubber bands and soap film)
to “compute” Euclidean Steiner trees [5, 7, 14].

Our study, which focuses on the case of three termi-
nals with equal path weights, bears similarity with a
recent study [4] which examines a related problem of
characterizing the minimum dilation spanners on three
terminals for a given budget. Whereas there exists a
mild degree of similarity, we note that we independently
developed our results, which provides an exact analysis
of the full evolution pathway between the Steiner tree
and the complete graph. On the other hand, the ana-
lytical result of [4] is mostly limited to the initial stage
of the evolution.

Computing an Euclidean STP is NP-hard, although
there is a polynomial time approximation scheme
(PTAS) for solving it [2]. On the more practical
side, fast methods including the GeoSteiner algorithm
[15,17] have been developed building on the Melzak con-
struction [13]. An open source implementation of the
GeoSteiner algorithm is maintained [1].

3 Preliminaries

Let there be n ≥ 3 terminals N = {v1, . . . , vn}, dis-
tributed in some way in a d-dimensional unit cube, d >
0. For each pair of terminals vi and vj , 1 ≤ i < j ≤ n,
let wij ∈ (0, 1] denote the (relative) weight or impor-
tance of the route connecting vi to vj . In practice, wij

may model the expected traffic flow from vi to vj , for
example. In an Euclidean budgeted Steiner tree (BSN)
problem, straight line segments are to be added for con-
necting the n terminals so that some or all of the termi-
nals are connected. Similar to Steiner trees, intermedi-
ate nodes other than v1, . . . , vn, which we call anchors,
may be added. The terminals, anchors, and the straight
line segments then form a graph containing one or more
connected components. Under the constraint that the
total length of the line segments does not exceed a bud-
get L, the BSN problem seeks a network structure that
minimizes the objective

J(L) =
∑︂

1≤i<j≤n

wijdij , (1)

in which dij denotes the shortest distance between vi
and vj on the network. If no path exists between vi and
vj , let dij be some very large number.

In the current work, we examine the case of n = 3
and wij = 1 for all 1 ≤ i, j ≤ 3, i ̸= j, i.e., paths
between pairs of terminals are equally important. Let
the three terminals be A,B, and C, we are looking for a
BSN minimizing the sum dAB+dBC+dAC subject to the
budget L. For a fixed L, let N(L) denote the optimal
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BSN structure. Let LST be the budget L when N(L) is
a Steiner tree. For convenience, let NST := N(LST).

4 Anchor Structures and Steiner Triangles

4.1 Basic Properties of Anchors

First, we note each anchor must have degree three.

Lemma 1 (Degree of Anchors) For three termi-
nals, any anchor must have degree exactly three.

Proof. Each anchor must connect at least three line
segments; otherwise, the anchor point and the involved
line segments only cause increases to the objective dAB+
dBC + dAC . An anchor’s degree also cannot be four
or larger when there are only three terminals, because
each outgoing edge from an anchor must be on a shortest
path to a unique terminal, if we are to minimize Eq. (1).
But there are only three terminals. □

We analyze what happens when L = LST+ε for small
ε > 0, for the case where the Steiner point lies in-
side △ABC, which happens when all angles of △ABC
are smaller than 2π/3. Due to continuity, the resulting
structure that minimizes Eq. (1) must be a perturbation
ofNST (e.g., Fig. 1(b)). This means thatN(LST+ε) must
start “growing” at the Steiner point. We want to un-
derstand how N(LST+ε) evolves for small ε. This raises
the following questions: (1) how many line segments are
in N(L = LST + ε) and (2) how do they come together?
We note that N(LST + ε) must contain more than three
straight line segments. Otherwise, N(LST + ε) will still
be a tree but with dAB+dBC+dAC = 2(LST+ε) > 2LST,
i.e., J(L) > J(LST).

To answer above-mentioned questions, we start with
establishing essential properties of anchors, concerning
their locations, degrees, and numbers. It is clear that
anchors must always fall within △ABC; otherwise, an
outside anchor (on the convex hull of all terminals and
anchors) can be “retracted” toward the boundary of
△ABC to reduce both the budget and the objective
function value. In fact, anchors cannot reside on the
boundary of △ABC, as shown in the following lemma.

Lemma 2 (Interiority of Anchors) For terminals
A,B, and C, any anchor must fall in the interior of
△ABC, excluding its perimeter.

Proof. Consider the setting illustrated in Fig. 3 where
only a portion of △ABC is drawn. Suppose that D is
the only anchor on AC and the horizontal line segment
passing through D and D′ is part of an optimal net-
work structure. For the setup, DD′ must be part of the
shortest path on the optimal network that connects A
to B as well as C to B; the entire AC must also be part
of the network that connects A and C.
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Figure 3: Moving C ′ along C ′C for a small amount.

We claim that such a configuration cannot be
optimal. To see this, retract D along DD′ by
some small distance of |DD′′|. This reduces the
budget by ∆L = |DD′′|+(|AC|−|AD′′|−|CD′′|).
At the same time, the cost reduction is ∆J =
2|DD′′|+(|AC|−|AD′′|−|CD′′|).
Let E ∈ AC be a point such that D′′E ⊥ AC. It

is straightforward to derive that |ED′′|≫ |CD′′|−|CE|
and |ED′′|≫ |AD′′|−|AE| for sufficiently small |ED′′|>
0. Therefore, |DD′′|≥ |ED′′|> (|AD′′|+|CD′′|−|AC|).
This means that for small |DD′′|, both ∆L and ∆J are
positive, i.e., we can reduce budget and at the same
time reduce the cost by retracting D along DD′ to D′′.
This means that D cannot be an anchor. If D is not the
only anchor on AC, the same proof works assuming D
is the lowest anchor. □

Building on Lemmas 1 and 2, we show that there can
be at most three anchors for three terminals.

Lemma 3 (Number of Anchors in N(LST + ε))
When all angles of △ABC are below 2π/3, for small
ε > 0, N(LST + ε) contains three anchors that forms a
triangle inside △ABC.

Proof. By Lemma 1, all anchors have degree three. If
there is only a single anchor that is not the Steiner point,
then N(LST + ε) still has a tree structure. This tree is
different from NST which is minimal, so the new tree
must have a larger objective function value which can-
not be optimal.

If there are two anchors, each with degree three, then
both of them cannot be connected to all of A,B, and C;
there must be exactly five line segments in N(LST + ε),
one of which connects the two anchors. This leaves four
line segments connected to the three terminals, which
means that two of these line segments must reach the
same terminal. This will induce a total budget that can-
not be an arbitrarily small amount above LST when the
Steiner point is inside △ABC. That is, this is impossi-
ble with a budget LST + ε for small ε > 0.

There cannot be more than three anchors when there
are only three terminals. To establish this, we note
that a shortest path between any two terminals, when
there are three terminals in total, can make at most two
“turns” due to path sharing. To see this, consider the
shortest path PAB between terminals A and B. PAB

may bend at most two times, once to share with a path
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from A to C and once to share with a path from B
to C. If PAB bends once, say at an anchor A′, then
both AA′ or A′B must be on a shortest path to B and
we must have a tree. This is not possible under the
assumption that ε is small, so there can only be one
edge coming out of a terminal. Therefore, each shortest
path between two terminals must bend exactly twice at
two anchors. The three shortest paths then have a total
of six anchors. Because each anchor is shared by two
shortest paths, there can only be three unique anchors
that form a triangle. □

4.2 Steiner Triangle for Three Anchors

Having shown that there are three anchors, let the an-
chor closest to A,B and C be A′, B′, and C ′, respec-
tively. This suggest that N(LST + ε) contains six line
segments AA′, BB′, CC ′, A′B′, A′C ′, and B′C ′. We
call △A′B′C ′ that “grows” out of the Steiner point a
Steiner triangle. Next, we establish that △A′B′C ′ is an
equilateral triangle, starting with showing that its three
internal angles are bisected by AA′, BB′ and CC ′. The
objective Eq. (1), dAB + dBC + dAC for the current set-
ting, translates to

J(LST + ε) =2|AA′|+2|BB′|+2|CC ′|
+ |A′B′|+|A′C ′|+|B′C ′|.

(2)

Lemma 4 (Bisector of Steiner Triangle) For ter-
minals A,B, and C with a Steiner point, let N(LST+ ε)
be composed of the Steiner triangle △A′B′C ′ and seg-
ments AA′, BB′ and CC ′. Then an angle of △A′B′C ′

is bisected by the line passing the corresponding anchor
and the terminal the anchor is connected to.

Proof. See the Appendix for the technical proof based
on infinitesimal analysis. □

Before moving on to showing that △A′B′C ′ is equi-
lateral, we note that Lemma 4 does not depend on ε
being small. Moreover, the result continues to hold if
there are one or two anchors, which can be readily ver-
ified.

Lemma 5 (Anchor Bisector) For terminals A,B,
and C, suppose C ′ is an internal anchor connected to
C in an optimal network structure N(L). Then CC ′

bisects the angle formed by the other two outgoing edges
from C ′.

We now prove a key structural property of BSN for
three terminals involving three anchors.

Theorem 6 (Steiner Triangle for Three Anchors)
For terminals A,B, and C with a Steiner point, assume
that N(LST + ε) is composed of the Steiner triangle
△A′B′C ′ and segments AA′, BB′ and CC ′. Then

△A′B′C ′ is equilateral with its center being the Steiner
point of the terminals. The center of △A′B′C ′ is the
intersection point of AA′, BB′ and CC ′.

Proof. See the Appendix. □

From Theorem 6, we can draw the following conclu-
sion. For three terminals with a Steiner point, as the
budget L goes just beyond LST, an equilateral triangle
will “grow” out the Steiner point toward the terminals.
Moreover, whenever there are three anchors, they must
form an equilateral triangle. All such equilateral trian-
gles have their vertices lying on the line segments formed
by the terminals and the Steiner point, as illustrated in
Fig. 4. We have not yet show, however, that as L grows,
the anchors cannot go from three to fewer and then be-
come three again. We delay this after the structures
with fewer anchors are characterized.
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Figure 4: For three terminals with a Steiner point
(which is always internal), when there are three anchors,
they always form an equilateral triangle.

4.3 One and Two Anchors

If there are two anchors, they must both be connected
to one shared terminal, say A, and each connecting to
a unique terminal in B and C. Let the anchors be B′

and C ′. N(L) then consists of five segments AB′, AC ′,
BB′, CC ′, and B′C ′. It can be shown that △AB′C ′ is
an isosceles triangle (see, e.g., Fig. 5).

A(A′)

B

C

B′

C′O′

Figure 5: For three terminals with a Steiner point, when
there are two anchors, they always form an isosceles
triangle with one of the terminals.

Proposition 1 (Steiner Triangle for Two Anchors)
For terminals A,B, and C with a Steiner point, if the
optimal network N(L) has two anchors B′, C ′, then
these two anchors form an isosceles triangle with one
of the terminals, e.g., A. AB′ = AC ′.
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Proof. See the Appendix. □

Following the same line of reasoning, when there is a
single anchor in an optimal network N(L), e.g., C ′ that
is connected to A,B, and C, if C ′ is not the Steiner
point, N(L) must contain one of AB, BC, and AC.
Suppose N(L) contains AB, then all we know is that
CC ′ must bisect ̸ AC ′B. See Fig. 2(d) for an example.

5 Evolution of the Budgeted Steiner Network

5.1 With Steiner Point

Having established the optimal configuration when
there are 1-3 anchors, we now piece them together to
understand the evolution of the network. Intuitively,
as the budget L increases, the evolution of the optimal
network N(L) would look like that shown in Fig. 2, go-
ing from Steiner tree to having three anchors, then two,
then one, and finally becoming the triangle of the three
terminals. To show this is the actual network evolution
pathway, however, we must show that there cannot be
discrete jumps in BSN structures, e.g., going from three
anchors to two anchors and then back to three anchors.

We proceed to show that the sequence in Fig. 2 is
indeed how N(L) evolves as L increases by analyzing
how J(L) changes as L changes, i.e., dJ

dL .

Lemma 7 (Rate of Change at Anchors) For ter-
minals A, B, and C, let C ′ be an anchor connected
to C. Let the angle formed by the other two edges em-
anating from C ′ other than CC ′ be 2α. As C ′ moves
closer to C, the rate of change to the objective function
dJ
dL due to the change to CC ′ is

dJ

dL
=

2 cosα− 2

2 cosα− 1
. (3)

Proof. Fig. 6 shows the setting where C ′ is moved
along C ′C for a small amount. By the bisector
Lemma 5, the addition of length (in green) to the two
edges coming out of C ′ that are not CC ′ is 2|EC ′| while
the reduction of length to |CC ′| is |C ′E|/cosα (the red
segment). Therefore, the change to the budget due to
this is ∆L = 2|C ′E|−|C ′E|/cosα.

CC′E

2α

Figure 6: Moving C ′ along C ′C for a small amount.

On the other hand, the change to the objective func-
tion value is ∆J = −(2|C ′E|/cosα − 2|C ′E|) because
C ′C contributes to two shortest paths. Dividing ∆J
over ∆L yields Eq. 3. □

Proposition 1 (Range of Change, Three Anchors)
For three terminals, when there are three anchors,

dJ

dL
=

1−
√
3

2
. (4)

Proof. For three anchors, α in Eq. (3) is π/6. We then
have dJ/dL = (

√
3− 2)/(

√
3− 1) = (1−

√
3)/2. □

Proposition 2 (Range of Change, 1-2 Anchors)
For three terminals, when there are one of two anchors,
let the angle formed at the anchor belonging to the
triangle structure of the network be 2α, then,

dJ

dL
=

2 cosα− 2

2 cosα− 1
. (5)

Since 0 < 2α ≤ π/2, α ∈ (0, π/4]. Let cosα = x,

x ∈ [
√
2
2 , 1). Eq. 3 becomes g(x) = 2x−2

2x−1 . It is straight-
forward to derive (using derivatives) that g(x) is nega-
tive on the given range of x and monotonically increases
to 0 as x → 1. This means, with reference to Fig. 6, that
the magnitude of dJ

dL becomes smaller as C ′ gets closer
to C (α decreases). This allows us to show that J(L)
decreases faster when there are more anchors. We be-
gin with showing that internal angles at anchors cannot
exceed π/3.

Lemma 8 (Feasible Anchor Configurations)
For three terminals and an optimal Steiner network,
the internal angles of the triangular structure of the
network at non-terminal anchors are always no more
than π/3.

Proof. For three anchors, we have shown they must
assume an equilateral triangle configuration. Suppose
that in a two-anchor network configuration, the opti-
mal network has internal angles at non-terminals an-
chors larger than π/3. For example, suppose that in
Fig. 5, ̸ AB′C ′ = ̸ AC ′B′ > π/3. This requires that
̸ B′AC ′ < π/3. Now, suppose we push down the tri-
angle A′B′C ′ along AA′ by a small δ > 0 and retract
along B′B and C ′C so that L remains unchanged. Be-
cause 0 > dJ

dL |A′> dJ
dL |B′= dJ

dL |C′ , this means that J
will actually decrease due to the change. Therefore, the
configuration cannot be optimal.

The same argument also applies to the single anchor
case: if the internal angle at the single anchor is larger
than π/3, the at least one of the two other internal
angles must be smaller than π/3. □

We are now ready to establish the evolution pathway
of the optimal Steiner network for three terminals with
Steiner points.
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Theorem 9 (BSN Evolution, with Steiner Point)
For terminals A,B, and C with a Steiner point O,
as the budget L > LST increases, the optimal Steiner
network N(L) will first grow an equilateral triangle,
△A′B′C ′, out of O toward the three terminals. The
internal angles of △A′B′C ′ are bisected by AA′, BB′

and CC ′. The growth continues until one of the
anchors, say A′, reaches terminal A, corresponding to
the largest internal angle of △ABC. Then, an isosceles
triangle continuous to grow in place of the equilateral
triangle, with its two internal angles ̸ AB′C ′ and
AC ′B′ bisected by BB′ and CC ′, respectively, until
one of the two anchors B′ reaches a second terminal,
say B, that corresponds to the second largest angle
of △ABC. Finally, the network grows as C ′ finally
reaches C, with CC ′ always bisecting ̸ AC ′B.

Proof. Without loss of generality, assume that
̸ BAC ≥ ̸ ABC ≥ ̸ ACB. By Lemma 3 and Theo-
rem 6, the initial optimal network when L = LST+ε has
an equilateral triangle A′B′C ′ growing out of the Steiner
point O, with AA′, BB′, and CC ′ bisecting ̸ B′A′C ′,
̸ A′B′C ′, and ̸ A′C ′B′, respectively. By Lemma 8, be-
fore △A′B′C ′ reaches A as an equilateral triangle (AA′

is shorter than than BB′ and CC ′ when ̸ BAC is the
largest angle of △ABC), it cannot happen that the
optimal network jumps to a configuration where one
anchor disappears. To see that this is the case, sup-
pose the network jumps to a configuration where A′

merges with A. This would force △A′B′C ′ to have
̸ B′A′C ′ < π/3 < ̸ A′B′C ′ = ̸ A′C ′B′, which is not
possible. The situation gets worse if B′ merges with B
or C ′ merges with C. Using a similar argument, we can
show that it is also not possible for the optimal network
to jump from three anchors to having a single anchor
without the equilateral △A′B′C ′ reaching its maximum
girth. Using the same approach, we can also show that
it is not possible to “jump” from a two-anchor configura-
tion to a single anchor configuration without the anchor
B′ reaching B, as the isosceles triangle expands. □

5.2 No Steiner Point

When an angle of △ABC, say ̸ BAC, is larger than
2π/3, A acts as a “Steiner” point. In this case, it be-
comes impossible for the optimal network N(L) to have
three internal anchors.

Lemma 10 (Anchor Multiplicity) For three termi-
nals without a Steiner point, the optimal network N(L)
for any L cannot have three anchors.

Proof. If there are three anchors, Theorem 6 must
hold. However, this is impossible if one of the angles
formed by the terminals is equal to or larger than 2π/3.

Referring to Fig. 4, suppose that ̸ BAC ≥ 2π/3. How-
ever, also by Theorem 6, ̸ BOC = 2π/3, which is not
possible. □

Following similar reasoning used for establishing the
case where the Steiner point is in the interior of △ABC,
the evolution of the optimal network for the current set-
ting goes through the following phases (assuming termi-
nals A, B, and C, and ̸ BAC ≥ 2π/3):

1. The budget L is sufficient to cover the shortest edge
of △ABC but less than LST. In this case, N(L)
contains one edge of △ABC

2. The budget L equal to LST. In this case, N(L) is
the Steiner tree comprised of AB and AC.

3. For L = LST+ε for small positive ε, a small isosceles
triangle grows out from A, producing a configura-
tion as shown in Fig. 7(a). The network satisfies
the bisector requirement given by Lemma 1. As
L increases, the isosceles triangle expands with the
bisector structure in place, until one of the vertex
of the triangle hits a terminal (B).

4. As one of the two anchors merge with a terminal,
the other anchor will continue to march toward the
last terminal (C) as L increases, eventually merge
with that terminal. A snapshot of this process is
given in Fig. 7(b).

B

A

C
(a) (b)

Figure 7: A spectrum of optimal Euclidean BSN network
structures (solid lines) for three terminals in a typical
setup where ̸ BAC ≥ 2π/3, as the allowed budget in-
creases.

6 Conclusion and Discussions

In this work, we propose the budgeted Steiner network
(BSN) problem to study shortest path structures among
multiple terminals under a path length budget. We es-
tablish the precise evolution of the BSN structure for
three arbitrarily located terminals where paths between
each pair of terminals have equal importance. It is
clear that the characterization yields efficient algorithms
for computing optimal BSN structures for any given 3-
terminal setup and length budget.

The current work just begins to scratch the surface of
the study of BSN; it is natural to study the case where
the weights are not equal as well as the case of more ter-
minals. It is also interesting to explore how BSN struc-
tures are affected by obstacles. Finally, as an alternative
to analytical approaches, it is interesting to explore es-
tablishing BSN structures using numerical methods.
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7 Appendix

Proof. [Proof of Lemma 4] Assume that for a given
budget L = LST + ε, the optimal network N(LST + ε)
has corresponding optimal objective J(LST + ε) as given
in Eq. 2. We show that CC ′ is a bisector of ̸ A′C ′B′

by analyzing the local changes to L and J(LST + ε) if
we perturb C ′.

C

A′

B′

C′D

E
F

Figure 8: Perturbing C ′ in an assumed optimal con-
figuration for the three-terminal Euclidean BSN prob-
lem. The figure zooms in around C ′ without showing A
and B. The drawing intentionally avoids assuming that
△A′B′C ′ is an equilateral triangle.

Referring to Fig. 8, let D be a point on the exten-

sion of
−−→
CC ′. A point E is introduced that shifts C ′ up

vertically (i.e., C ′E ⊥ C ′C) by the amount |C ′E|, as
a small perturbation to C ′. Now draw a line EF such
that EF ⊥ A′C ′ with F ∈ A′C ′. Because |C ′E| is small,
|A′F |≈ |A′E| (this is a second order approximation). As
C ′ is moved to E, the length change of A′C ′ is given by
|A′E|−|A′C ′|, which is approximately |A′F |−|A′C ′|=
−|FC ′|= −|C ′E|cos ̸ A′C ′E = −|C ′E|sin ̸ A′C ′D.
Following a similar analysis procedure, the length

change of B′C ′, |B′E|−|B′C ′|, is approximately
|C ′E|sin ̸ B′C ′D. Because C ′E ⊥ C ′C and |C ′E| is
small, |CC ′|≈ |CE| (also a second order approxima-
tion). Relating the length changes due to moving C ′

up to the change of the budget L, the net change to L
is |C ′E|(sin ̸ B′C ′D− sin ̸ A′C ′D) (i.e., B′C ′ becomes
longer and A′C ′ becomes shorter with CC ′ unchanged,
as a second order approximation). The change to the
objective J(LST+ ε) is the same since CC ′ is unaffected
by C ′E.

Because the changes to L and J(LST + ε) are exactly

the same, if ̸ A′C ′D ̸= ̸ B′C ′D, then either
−−→
C ′E or

a perturbation in the direction of
−−→
EC ′ will cause both
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|A′C ′|+|B′C ′|+|C ′C| and |A′C ′|+|B′C ′|+2|C ′C| to de-
crease, which means that L and J(LST + ε) can be si-
multaneously reduced. This contradicts the assumption
that L is the smallest budget for which the current ob-
jective J(LST+ε) is possible. Since this cannot happen,
it must be the case that ̸ A′C ′D = ̸ B′C ′D in an opti-
mal network configuration. That is, CC ′ is a bisector of
̸ A′C ′B′. By symmetry, BB′ is a bisector of ̸ A′B′C ′

and AA′ is a bisector of ̸ B′A′C ′. □

Proof. [Proof of Theorem 6] Again assuming an opti-
mal solution, extend line segments AA′, BB′, and CC ′

so that they intersect (see Fig. 9).

A

B

C

A′

B′

C′
O′

A′′

B′′

C′′

Figure 9: Applying a perturbation to△A′B′C ′ that lifts
it vertically along CC ′, which keeps the length of CC ′

unchanged in a first order approximation.

Because they are bisectors of △A′B′C ′, by Lemma 4,
they must meet at the same point O′. For this set-
ting, we again apply a perturbation argument used in
proving Lemma 4, this time lift the entire △A′B′C ′ in
a direction perpendicular to CC ′. Let the perturbed
triangle be △A′′B′′C ′′. Using the same argument, this
time applied to the length changes of AA′ and BB′, we
can reach the conclusion that the line CC ′ must be a
bisector of ̸ AO′B. In other words, shifting AA′ and
BB′ synchronously will not reduce the objective func-
tion only if CC ′ bisects ̸ AO′B.
Similarly, AA′ must be a bisector of BO′C and

BB′ must be a bisector of AO′C. Using that CC ′

bisects AO′B and A′C ′B′, it can be derived that
̸ O′A′C ′ = ̸ O′B′C ′, which in turn shows that
̸ B′A′C ′ = ̸ A′B′C ′. By symmetry, it can then be
concluded that △A′B′C ′ is an equilateral triangle. This
further shows that ̸ A′O′B′ = ̸ A′O′C ′ = ̸ B′O′C ′ =
2π/3, implying that O′, the center of △A′B′C ′, is the
Steiner point O of the terminals. □

Proof. [Proof of Proposition 1] By Lemma 5, BB′ bi-
sects ̸ AB′C ′ and CC ′ bisects ̸ AC ′B′. Let the exten-
sions of BB′ and CC ′ meet at O′ (see Fig. 5). Then AO′

bisects ̸ B′AC ′. Using the perturbation argument from
the proof of Theorem 6, applied to perturb the lengths
of BB′ and CC ′, we can show that AO′ is also a bisec-
tor of ̸ B′O′C ′ (we do this by “rotating” △AB′C ′ with

center A slightly). This means that ̸ B′O′A = ̸ C ′O′A,
which in turn implies that ̸ AB′O′ = ̸ AC ′O′ and fur-
ther implies ̸ AB′C ′ = ̸ AC ′B′. Therefore, △AB′C ′ is
an isosceles triangle and AB′ = AC ′. □
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