
CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

A Sub-quadratic Time Algorithm for the Proximity Connected k-center Problem
on Paths via Modular Arithmetic

Binay Bhattacharya∗ Tsunehiko Kameda∗ Amirhossein Mozafari∗†

Abstract

The k-center problem is one of the most well-known prob-
lems in combinatorial optimization which has been exten-
sively studied in the past. In this paper, we introduce a
generalized version of the k-center problem called proxim-
ity connected k-center (PCkC) problem. In this problem,
we are given a set of demand points in a metric space and
a parameter δ > 0. We are going to locate k center points
such that the maximum distance of a demand point to its
nearest center is minimized and each pair of centers can
communicate with each other either directly or via other
centers assuming that each center can directly communi-
cate with any other center within the range of δ of itself.
Note that when δ is large enough, the problem turns to
the k-center problem and when δ tends to zero, the prob-
lem turns to the 1-center problem. We consider the PCkC
problem when the underlying space is a path and present a
sub-quadratic time algorithm for both the unweighted and
the weighted demand points cases.

1 Introduction

The k-center problem is one of the most important facility
location problems which has been extensively studied in
the past [4, 6, 10, 11, 16]. In this problem, we are given a set
of n demand points U = {v1 . . . , vn} in a metric space such
that each demand point vi ∈ U has a non-negative weight
wi. The objective is to find a k-center (a set of k points in
the space) C such that cost(C) := maxvi∈U{wid(vi, C)} is
minimized, where d(vi, C) := minc∈Cd(vi, c) (here d(vi, c)
is the distance between vi and c in the space). We call
this minimum cost the optimal cost for the problem. If
we have unit weights on all demand points, the problem is
called unweighted. We say that a k-center C satisfies the
proximity connectedness condition (PCC) with respect to
a parameter δ > 0 if the δ-distance graph of C is connected
(the δ-distance graph of C is a graph with the vertex set
C such that there is an edge between c1 an c2 in C if and
only if d(c1, c2) ≤ δ). In the proximity connected k-center
(PCkC) problem, in addition to U , we are also given a
parameter δ > 0 and we are going to find a k-center with
the minimum cost that satisfies the PCC.

In practice, if we consider the centers as facility loca-
tions, the parameter δ can represent the range for which,
each facility can directly communicate with any other fa-
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cility within the range δ of itself. So, if the centers sat-
isfy the PCC, each pair of facilities can communicate with
each other directly or via other facilities. For example,
suppose that we need to locate k communication/control
equipment to observe n sensors while the equipment need
to send/receive messages between themselves (directly or
via other equipment). Also, each equipment can safely
send/receive data with any other equipment within the
range δ of itself. The problem of locating the equipment as
close as possible to the sensors can be modeled as PCkC
problem in the plane.

Note that if δ is sufficiently large, the problem reduces
to the k-center problem which is known to be NP-hard in
both the plane and metric graphs [6, 13] (a metric graph
is a graph for which each of its edges has a length and the
lengths satisfy the triangular inequality). This implies that
the PCkC problem is also NP-hard in the plane and metric
graphs and so it is not possible to solve it efficiently. In [6],
Kariv and Hakimi showed that the k-center problem can
be solved in polynomial time when the underlying space is
a metric tree and gave an O(n2 log n) time algorithm for
the problem. In 1991, Frederickson [4, 5] showed that the
unweighted k-center problem can be solved in linear time
in trees. Finally, in 2018, Wang and Zhang [16] provided an
O(n log n) time algorithm for the k-center problem in trees.
The PCC condition first appeared in the context of wire-
less networks in 1992 [7]. Later, Huang and Tsai studied
the 2-center problem in the plane, considering the proxim-
ity condition between the centers [8, 9]. As another work,
in 2022, Bhattacharya et al. [2] presented an O(n2 log n)
time algorithm to solve the proximity connected 2-center
problem in the plane improving the previous algorithm for
the problem with O(n5) time complexity [7]. Although
there are some related works in the context of theory of
wireless sensor networks [1, 14], the k-center problem has
not been studied when we have the proximity condition
between the centers. In this paper, we address this prob-
lem by providing a sub-quadratic time algorithm for the
k-center problem on paths having the PCC.

2 PCkC Problem for Unweighted Paths

Let P = (v1, . . . , vn) be the given unweighted path (con-
sisting of both the vertices and the edges between them)
such that the vertices lie on the x-axis from left to right
and v1 lies on the origin. Without loss of generality, we
assume that n is a power of 2. Also, we use the nota-
tion vi (1 ≤ i ≤ n) for both the vertex itself and the
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Figure 1: An example of the PCkC problem on a path with
8 vertices.

x-coordinate of the vertex. Thus, we have an order on the
vertices based on their x-coordinates. Also, if vi < vj ,
we denote the interval between vi and vj on the x-axis by
[vi, vj ]. In this section, we are going to find a k-center C∗

for P such that C∗ satisfies PCC and,

cost(C∗) = min{cost(C) :

C is a k-center for P and satisfies PCC}
We call C∗ an optimal solution and its cost the optimal
cost. We denote the optimal cost by r∗ and the centers in
C∗ by (c∗1, . . . , c

∗
k) from left to right on the x-axis. Figure 1

shows an example of the PCkC problem on a path and its
corresponding optimal solution.

The idea of obtaining an optimal solution for the prob-
lem is first computing r∗ and then, using it to build an
optimal solution. In order to do that, we first design a
feasibility test for the problem which gets a value r ≥ 0
and determines whether it is feasible (r ≥ r∗) or infeasible
(r < r∗). Algorithm UPATH-FT presents such a feasibil-
ity test for the unweighted PCkC problem on a path. Note
that if r ≥ r∗, UPATH-FT(P ,r) also gives us a k-center
with a cost at most r. Using the feasibility test, we can
check whether r∗ = 0. In this case the trivial solution is
putting a center at each vertex. So henceforth, we assume
that r∗ > 0. Note that in Algorithm 1, the vertices in V are

Algorithm 1 UPATH-FT(P, r)

1: Set Counter = 1 and V = (v2, . . . , vn).
2: Put a center at xc = r.
3: while there is an element in V do
4: Eliminate all vertices v ∈ V with d(xc, v) ≤ r.
5: Put a center at xc = min{xc + δ, V [1] + r}.
6: Counter = Counter + 1.
7: if Counter > k then
8: return infeasible.
9: end if

10: end while
11: return feasible.

eliminated in order and so the time complexity of UPATH-
FT would be O(n + k). It is important to mention that
we might have more than one optimal solution for a given
problem instance but, having r∗ (which is unique), the al-
gorithm UPATH-FT gives us a unique optimal solution. In
order to avoid confusion, henceforth we exclusively use the
notation C∗ for this optimal solution. We say that a vertex
v is covered by a center c∗i ∈ C∗ if d(v, c∗i ) = d(v, C∗). Also,
d(v, c∗i ) is called the cost that c∗i induces on v. We say that
a sequence of t points (c1, . . . , ct) (the order is left to right
on the x-axis) is a t-train if ∀ 1 ≤ i < t, d(ci, ci+1) = δ.

Proposition 1 There exists a pair of vertices (vi, vj) such
that the subset C ′ ⊆ C∗ of centers in [vi, vj ] is a t-train (for
some t) and d(vi, C

′) = d(vj , C
′) = r∗.

The reason of the above proposition is that if such a pair
does not exist, for any vertex v with d(v, C∗) = r∗, we can
move the covering center of v (and possibly other centers
to ensure the PCC) towards v to get a solution with a
cost smaller than r∗, which contradicts the optimality of
r∗. We call any pair (vi, vj) satisfying the condition of
Proposition 1, a determining pair for the problem.

Proposition 2 If d(v1, vn) ≥ kδ, then (v1, vn) is a deter-
mining pair for the problem.

Proof. For any vertex v in [c∗1, c
∗
k], d(v, C

∗) should be at
most δ/2 because of the PCC. So, if d(v1, vn) ≥ kδ, the
cost of C∗ should be greater than or equal to δ/2 which
means that (v1, vn) is a determining pair. □

Based on the above proposition, if d(v1, vn) ≥ kδ, we have
d(c∗1, c

∗
k) = (k − 1)δ and d(v1, c

∗
1) = d(c∗k, vn). Therefore,

r∗ = (d(v1, vn) − kδ)/2. Now, UPATH-FT(P, r∗) will
give us C∗. Henceforth in this section, we assume that
d(v1, vn) < kδ and so 0 < r∗ < δ/2 (because of the PCC).
In order to find r∗, we build a set of candidate values C
and iteratively use the feasibility test to discard its values
until r∗ becomes clear. Consider a pair of vertices (vi, vj)
and a t-train T such that d(vi, vj) > (t− 1)δ. We say that
T is fitted in [vi, vj ] if d(vi, T ) = d(vj , T ). Note that if T is
fitted in [vi, vj ], the induced cost of T on vi and vj would
be (d(vi, vj)− (t− 1)δ)/2 and is denoted by ICt(vi, vj). If
d(vi, vj) ≤ (t − 1)δ, we say that (vi, vj) does not accept
a t-train. Note that any pair of vertices accepts 1-train
which is indeed the mid-point of the connecting segment
of vi and vj . Based on Proposition 1, the set of candidate
values C can be considered as follows:

C = {ICt(vi, vj) : (vi, vj) accepts a t-train}

Because each pair of vertices can generate up to O(k)
candidate values, the size of C would be O(n2k). A naive
algorithm to find r∗ is computing the entire C, then sort
it and perform binary search using the feasibility test
to find r∗. It is easy to see that the time complexity
of this approach is O(n2k log(n + k)). In the rest, we
show that how we can reduce this bound and get a
sub-quadratic algorithm but before, it is useful to discuss
about the geometric interpretation of the candidate values.

Geometric View: Let Li and Ri be two half-lines
from vi with angles π/4 and 3π/4 with the positive direc-
tion of the x-axis respectively. Note that the y-coordinate
of the intersection of a vertical line at point x with Li ∪Ri

is the cost that a center at x will induce on vi (this is
because we assumed that the vertices are unweighted).
Based on this observation, for a pair (vi, vj), IC1(vi, vj)
is the y-coordinate of the intersection point of Ri and Lj .
Furthermore, if (vi, vj) accepts a t-train, ICt(vi, vj) would
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Figure 2: The geometric view of the candidate values gen-
erates by (vi, vj1) and the effective candidate value gener-
ated by (vi, vj2).

be the y-coordinate of the horizontal segment with length
(t − 1)δ with sides on Ri and Lj (see Figure 2). Based
on this geometric view, the following observation can be
concluded:

Observation 1 If (vi, vj) accepts a t-train (t > 1) then
ICt(vi, vj) = ICt−1(vi, vj)− δ/2.

Consider a pair (vi, vj) and the non-zero candidate value
ICk′(vi, vj) such that either k′ = k or (vi, vj) does not ac-
cept a (k′ + 1)-train (equivalently, k′-train is the longest
train that can be fitted in (vi, vj)). According to Observa-
tion 1, ICk′(vi, vj) is the only candidate value that (vi, vj)
can generate in (0, δ/2). If (vi, vj) generates a candidate
value in (0, δ/2), we call this candidate value an effective
candidate value. Because r∗ ∈ (0, δ/2), we only need to
search the effective candidates generated by the pairs in
P in order to find r∗. Let us gather all the effective can-
didates into an n × n matrix M such that M [i, j] is the
effective candidate value generated by (vi, vj) if i < j and
zero otherwise. We can see that M is not a sorted matrix
because for a fixed i, by increasing j, the number of centers
in the train that induces M [i, j] might change. Indeed, this
is the main obstacle to get a linear time algorithm like [4, 5]
for the unweighted PCkC problem. Precisely, the k-center
problem is equivalent to the PCkC problem when δ = ∞.
In this case, all the effective candidates are generated by
1-trains. The key point here is that the effective cost gener-
ated by a 1-train on a pair (vi, vi) is an increasing function
of d(vi, vj). This monotonicity makes the matrix M sorted
which plays a pivotal role in obtaining a linear time algo-
rithm.

In order to search M in a sub-quadratic time, we define
an auxiliary matrix M̄ such that applying the feasibility
test on its elements enables us to discard the elements of
M in an efficient way. We define M̄ as an n × n matrix
such that:

M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j}

Note that M̄ is a row sorted (increasing) matrix but may
not be sorted column-wise. We define the remainder func-
tion remδ(x) as follows:

remδ(x) = x−
⌊x
δ

⌋
× δ

Observation 2 If i < j, then we would have M [i, j] =
remδ(d(vi, vj))/2.

This is from the fact that the size of the portion of
[vi, vj ] not covered by the longest train in the interval is
remδ(d(vi, vj)).

Proposition 3 If M [i, j] = r∗ then for all i < j′ < j,
M [i, j′] ≤ r∗.

Proof: We proceed by contradiction. Suppose that
M [i, j] = r∗ and ∃j′ : i < j′ < j such that M [i, j′] > r∗.
Let C ′ = (c∗h1

, . . . , c∗h2
) ⊆ C∗ be the train in [vi, vj ] that

induces r∗ on vi and vj . Also, let C = (c1, . . . , cq) be
the longest train that can be fitted in [vi, vj′ ] that induces
the cost M [i, j′]. Note that |C| < |C ′|, otherwise because
v′j < vj , M [i, j′] could not be greater than M [i, j]. Note
that c∗h1

< c1 because we assumed M [i, j′] > r∗. Now, if
c∗h1+q < vj′ , we can fit a (q + 1)-train in [vi, vj′ ], which
contradicts the way we chose C. So, let us assume that
c∗h1+q > vj′ (see Figure 3).
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Figure 3: Proof of Proposition 3.

Here, c∗h1+q is the center that covers vj′ in C∗. If
d(vj′ , c

∗
h1+q) = r∗, d(vi, vj′) would be a multiple of δ

and so M [i, j′] = 0 which is against our assumption that
M [i, j′] > r∗. Thus, we have d(vj′ , c

∗
h1+q) < r∗ but in

this case we can fit a (q + 1)-train in [vi, vj′ ] which is a
contradiction. □

Example: In Figure 4, the fitted 4-train (c∗1, . . . , c
∗
4)

between v1 and vj induces the optimal cost r∗ for
the problem. In order to have M [i, j′] > r∗ for some
1 < j′ < j, vj′ should lie on a forbidden region, which
are the set of points with distances greater than r∗ to
their closest center (these regions are specified in red in
Figure 4).

v1 vjc∗1 c∗2 c∗3 c∗4

2M[1,x]

2r∗

Forbidden region

δ 2δ 3δvj′

2M [1, j′]

y = remδ(x)

r∗ r∗

Figure 4: An example for Proposition 3.

Observation 3 By applying the feasibility test on M̄ [i, j],
one of the following cases will happen:
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1. M̄ [i, j] is feasible. In this case, we can discard all
M [i, j′] with j′ > j (based on Proposition 3).

2. M̄ [i, j] is infeasible. In this case, we can discard all
M [i, j′] with j′ ≤ j (based on the definition of M̄).

Note that in the part 1 of the above observation, when
M̄ [i, j] is feasible, then either M̄ [i, j] > r∗ or M̄ [i, j] = r∗.
For the former case, if M [i, j′] = r∗ for some j′ > j, it con-
tradicts Proposition 3 and for the later case we still have r∗

in our undiscarded values. According to the above obser-
vation, we can find r∗ by iteratively applying the feasibil-
ity test on the elements of M̄ and discard the elements of
M until r∗ becomes clear. Algorithm DISC-ROUND(M)
shows how we can discard 1/4th of the undiscarded ele-
ments in M at each iteration. We can see that at the be-
ginning of each iteration the undiscarded elements of each
row make a connected region. We call this region the undis-
carded region. Because M̄ is row sorted, if d1 and d2 are
the first and the last indices of the undiscarded region of an
ith-row in M , if we know whether M̄ [i, d1+⌊(d1+d2)/2⌋] is
feasible, we can discard half of the elements in the region.
Note that in Algorithm 2, the variables d1, d2 and wi can be

Algorithm 2 DISC-ROUND(M)

1: for i from 1 to n do
2: Set d1, d2 and ni as the first index, the last index

and the number of elements in the undiscarded region
of the ith-row of M respectively.

3: Set mi as M̄ [i, d1 + ⌊(d1 + d2)/2⌋].
4: end for
5: Compute the weighted median m of {mi : 1 ≤ i ≤ n}

where mi has weight ni.
6: Run UPATH-FT(P ,m).
7: if m is feasible then
8: For each i with mi ≥ m, discard M [i, j′] : j′ > mi.
9: else

10: For each i with mi ≤ m, discard M [i, j′] : j′ ≤ mi.
11: end if

updated after the discarding phase of the previous iteration
(so we don’t need to search the entire matrix to compute
them at the beginning of the current iteration). Also, we
compute the weighted median of the mid-indexes of the
undiscarded region of the rows because at the beginning
of an iteration, the undiscarded region of the rows in M
may not have the same size. We can see that in each itera-
tion, we need to compute the median of O(n) values in M̄ .
The bottleneck of the time complexity of DISC-ROUND
is the cost of obtaining an element of M̄ . Precisely, if the
time complexity of computing an element of M̄ is O(g(n)),
then the total time complexity of DISC-ROUND would be
O(ng(n)+k) and so the overall time complexity of our algo-
rithm for the unweighted PCkC problem on paths would be
O((ng(n)+k) log n) (because we have O(log n) iterations).
In the next subsection, we discuss how we can compute an
element of M̄ efficiently.

2.1 Computing an Element of M̄

In this subsection, we provide a preprocessing phase
that enables us to compute M̄ [i, j] in sub-linear time.
Let Mi,j = {M [i, i + 1], . . . ,M [i, j]} and so, M̄ [i, j] =
max Mi,j . We first build a balanced binary tree T on
top of the vertices in P (we assumed that n is a power
of 2). Thus, each leave of T corresponds to a single vertex.
For a node ν ∈ T , span(ν) is defined as the set of vertices
that have ν as a common ancestor. Note that the root of
T spans the entire P . Also, we denote the first and the last
indexes of the vertices in span(ν) by left(ν) and right(ν)
respectively. In each node ν ∈ T , we store the sequence
σ(ν) obtained from sorting {2M [v1, v] : v ∈ span(ν)} in-
creasingly. It is easy to see that the time complexity of
building T and the sequences in its nodes is O(n log n).

Observation 4 For any two numbers a and b, we have:

remδ(a+ b) = remδ(remδ(a) + remδ(b))

Based on the above observation and Observation 2, for any
j′ ≥ i we can write M [i, j′] as:

M [i, j′] = remδ(d(vi, vj′))/2 =

remδ(d(v1, vj′)− d(v1, vi))/2 =

remδ(remδ(d(v1, vj′))− remδ(d(v1, vi)))/2 =

remδ(2M [v1, vj′ ]− 2M [v1, vi])/2

Now, for each vertex ν with σ(ν) = (s1, . . . , st) and i ≤
left(ν), we define σi(ν) as:

σi(ν) =
(
remδ(s1− 2M [v1, vi]), . . . , remδ(st− 2M [v1, vi])

)
Let µi(ν) be the maximum of σi(ν). Based on the
above argument, we can see max{M [left(ν), left(ν) +
1], . . . ,M [left(ν), right(ν)]} is indeed µi(ν)/2. An impor-
tant observation here is that because the elements of M
are at most δ/2, σi(ν) is a concatenation of two sorted se-
quences namely σ1

i (ν) and σ2
i (ν) (note that one of these

sequences might be empty). So, in order to find µi(ν),
we need to compare the last elements of σ1

i (ν) and σ2
i (ν)

(if they exist) and pick the greater value. Precisely, if
sj′ − 2M [v1, vi] is negative (resp. positive) for some sj′ ∈
σ(ν), remδ(sj′−2M [v1, vi]) belongs to σ1

i (ν) (resp. σ
2
i (ν)).

Thus, we can do binary search to obtain the index of the
last element of σ1

i (ν) and so µi(ν) in O(log |span(ν)|) time.
We can use the above data structure to find M̄ [i, j] as

follows: we first obtain two paths πi and πj and their split
vertex νsplit from the root of T to vi and vj respectively.
Let Vi,j be the set of right (resp. left) children of πi (resp.
πj) from νsplit to its leaf (including vj). Now, Mi,j =
1/2∪ν∈Vi,j

σi(ν) where the multiplication is done element-
wise. Therefore,

M̄ [i, j] = max Mi,j = max{µi(ν) : ν ∈ Vi,j} (1)

because |Vi,j | = O(log n) and computing each µi(ν) in (1)
also costs O(log n), the total complexity of computing
M̄ [i, j] would be O(log2 n) which leads to an overall
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O
(
(n log2 n + k) log n

)
time complexity for the PCkC

problem in unweighted paths.

Further improvements: First, we observe that if
for two nodes ν, ν′ ∈ T , ν′ is a parent of ν then σ(ν)
is a sub-sequence of σ(ν′). This property enables us to
use a technique called fractional cascading [3] to avoid
doing binary search on each of the nodes in Vi,j to find
their maximum. Precisely, we equip each element s of
σ(ν′) with a pointer that points to the smallest element
in ν larger than or equal to s. This structure can be
constructed in O(n log n) time [3]. So, in order to obtain
all {µi(ν) : ν ∈ Vi,j}, we only perform one binary search
on σi(root(T )) with cost O(log n) and follow the pointers
along the paths to obtain each µi(ν) : ν ∈ Vi,j in a
constant time. So, the total complexity of computing
M̄ [i, j] would be O(log n) and so, the total running time
would be O

(
(n log n+ k) log n

)
.

As another improvement, note that we only need to do
binary search on σi(root(T )) once for each row i in the
entire algorithm. Also, by spending O(n log n) time, for
each root-leaf path πi and each ν′ ∈ πi, we can store
max{µi(ν) : ν is right child of a node in πi[ν

′, vi]} in ν′

(πi[ν
′, vi] is the portion of πi from ν′ to vi) by walking along

πi twice. So, having νsplit, we only need to take care about
computing max{µi(ν) : ν ∈ Vi,j and hanging from πj}.
To address this problem, consider a fixed ith-row. Based
on Algorithm 2, at each iteration r, the undiscarded region
of the ith-row corresponds to span(νr) for some νr ∈ T .
Let νrm be the left child of νr (if we are not at the last
iteration) with mr = right(νrm). We can see that mr is
the median of the undiscarded region. Now, νr+1

m is either
the left child of νrm or the left child of the right neighbor
of νrm. Let r0 be the last iteration for which νr0m is on πi.
For iterations r ≤ r0, we only need to consider the maxi-
mum of the values in σi(ν

′) where ν′ the first right child
on πi after ν

r
m. Also, for iterations r > r0, we only need to

have the set of maximum values in the left hanging nodes
of πmr [νsplit, ν

r
m] and νrm itself. Now, it is easy to see that

as r increases to r + 1, these set of values can be updated
in a constant time. Thus, we can conclude that computing
M̄ [i,mr] for all iterations r only takes O(log n) time and
because we have linear number of rows, we would have the
following theorem:

Theorem 1 The unweighted PCkC problem can be solved
in O((n+ k) log n) time.

3 PCkC Problem for Weighted Paths

Let P = (v1, . . . , vn) be the given weighted path such that
wi is the weight of vi. For a point x on P , we define
wd(vi, x) = wid(vi, x). Again each pair of vertices (vi, vj)
generates O(k) candidate values which corresponds to the
trains that can be fitted in [vi, vj ]. Here, because the
weights of vi and vj might be different, a train may not
be required to have the same distance from vi and vj in
order to induce the same cost on them. Again, we denote

the cost that a fitted t-train in [vi, vj ] induces on vi and vj
by ICt(vi, vj). Suppose that d(vi, vj) > tδ for some t > 1.
We define the width of (vi, vj) as ICt−1(vi, vj)−ICt(vi, vj)
and denote it by W (vi, vj). Note that this value is inde-
pendent of t and only depends on wi and wj and so, we can
compute it in a constant time (in the unweighted case, the
width of all pairs in P are δ/2). Because here the widths
of the pairs in P might not be equal, we first need to find
an interval I∗ such that each pair of vertices can gener-
ate at most one cost in I∗. But before going into that, we
need to update our feasibility test to support weighted ver-
tices. Algorithm 3 presents the feasibility test procedure
WPATH-FT(P ,r) which gets a weighted path P and a test
value r and determines whether r ≥ r∗ or r < r∗.

Algorithm 3 WPATH-FT(P, r)

1: Set Counter = 1
2: for i=1 to n do
3: Let xi be the point on the right side vi such that

wd(vi, xi) = r.
4: end for
5: Let X = (x1, . . . , xn).
6: Let xc = x1.
7: while There is an element left in X do
8: Eliminate xis from X corresponding to the vertices

for which wd(vi, xc) ≤ r.
9: Put a center at xc = min{xc + δ,X[1]}.

10: Counter = Counter + 1.
11: if Counter > k then
12: return infeasible.
13: end if
14: end while
15: return feasible.

Note that in the while loop of Algorithm 3, we eliminate
xis according to the order in the sequence X and so, the
running time of the above feasibility test is O(n+ k). The
geometric view for the weighted case is similar to the un-
weighted case but here, for each vertex vi, the magnitude
of the slopes of Ri and Li is wi. For each pair (vi, vj), the
y-coordinate of the intersection point of Ri and Lj is the
cost that a fitted 1-train (single point) in [vi, vj ] induces
on vi and vj which is denoted by IC1(vi, vj). Similarly, if
d(vi, vj) > (t−1)δ, ICt(vi, vj) would be the y-coordinate of
the horizontal segment with length (t− 1)δ and endpoints
on Ri and Lj (see Figure 5).

3.1 Matrix Search for Weighted Paths

First, we need to build an interval I1 = [a, b] such that
r∗ ∈ I1 and it’s interior does not contain any IC1(vi, vj) for
any i < j (note that IC1(vi, vj) is indeed the y-coordinate
of the intersection point of Ri and Lj). If we use Lemma
2.5 [16] on all Ri and Lj (1 ≤ i, j ≤ n), we can get I1 in
O((n+ k) log n) time. Let us define W ∗ as follows:

W ∗ = min{W (vi, vj) : i < j and IC1(vi, vj) ≥ b}
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Figure 5: A weighted path (v1, v2, v3, v4), the width of
(v2, v4) and three costs generated by the pair. Note that
only one of them lies inside I∗.

We can see that r∗ ∈ I2 := [b − kW ∗, b] ∩ I1. This is
because r∗ can’t be smaller than the cost that a fitted k-
train induces on the generating pair of W ∗.

Proposition 4 W ∗ can be computed in O(n log n) time.

Proof. We first compute the intersection points of all
Li and Rj for 1 ≤ i, j ≤ n with the horizontal line
y = b. Then, we sort these intersections on the line
from left to right in O(n log n) time. So, each of these
intersections corresponds to a line with a positive or a
negative slope. We traverse these intersections from left
to right and store the minimum positive slope and the
minimum width we have seen in variables min slope and
min width respectively. Finally, we set min width as W ∗.
Precisely, when we visit an intersection point, if it came
from a line with a positive slope, we update min slope
if necessary and if it came from a line with a negative
slope, we compute the width it creates with the line that
generatedmin slope and updatemin width if necessary. □

We can see that the length of I2 is at most kW ∗.
This implies that by applying the feasibility test O(log k)
times at the costs b − iW ∗ (0 ≤ i ≤ k) we get an
interval I3 ⊆ I2 with length at most W ∗ containing r∗.
Because W ∗ is the minimum width, each pair (vi, vj) with
IC1(vi, vj) ≥ b can generate at most one candidate value
in I3.

Consider the set of half-lines {R1, . . . , Rn−1} (all with
positive slopes) and their upper-envelope polygonal chain
as a function fUE (x). We can see that fUE is a piece-wise
linear and an increasing function. Also, fUE (x) is the
cost of covering all the vertices on the left side of x if we
put a center at x. We can compute fUE in linear time
as follows: suppose that we have already computed the
upper-envelope of {R1, . . . , Rj−1} consisting of it’s lines
and break points. Now, when we add Rj and update our
envelope, if Rj is below the last break points, we consider
Rj and the last line of the envelope for a possible new
break point. Otherwise, we find the first break point
below the line (be checking the break points one by one
from the last) and consider the line next to it (on its left)
for a break point. Note that when we check a break point
and it turns out it is below Rj , the line next to it (on
its right) can never be a part of the envelope. Because

we have linear number of lines, the time complexity of
computing fUE is linear.

Let (x1, . . . , xs) be the x-coordinates of the break points
of fUE where s is the number of break points. Then, we can
use our feasibility test to do binary search on {fUE (xi) :
1 ≤ i ≤ s} to find an interval [xq, xq+1] such that r∗ ∈
[fUE (xq), fUE (xq+1)]. Let Rq (generated by vq) be the line
corresponding to the portion of fUE in [xq, xq+1]. Then we
have the following observation:

Observation 5 If c∗1 induces r∗, then vq is the first vertex
of a determining pair.

Based on the above observation, we can consider all pairs
{(vq, vq+1), . . . , (vq, vn)}, obtain the candidate value that
each generates, sort them and do binary search (using our
feasibility test) to get an interval I(1). Now, c∗1 can’t gen-
erate any candidate value in the interior of I(1). Similarly,
we can do the above process on {L2, . . . , Ln} to get an in-
terval I(2) such that c∗k can’t generate any candidate value
in the interior of I(2). Let I∗ = I3 ∩ I(1) ∩ I(2). So, it is
only left to resolve the candidates in the interior of I∗.

Observation 6 If (vi, vj) is a determining pair and a
train (c∗h1

, . . . , c∗h2
) in [vi, vj ] induces r∗ on the interior of

I∗, then

1. 0 < d(vi, c
∗
h1
), d(vj , c

∗
h2
) < δ/2.

2. (c∗h1
, . . . , c∗h2

) is the longest train that can be fitted in
[vi, vj ].

The first part of the above observation comes from the
fact that if r∗ lies on the interior of I∗, then h1 ̸= 1 and
h2 ̸= k. So, if for example d(vi, c

∗
h1
) ≥ δ/2 then because of

the PCC, c∗h1−1 can cover vi in the optimal solution. For
the second part, note that if we are able to fit a longer
train in [vi, vj ] then either d(vi, c

∗
h1
) or d(vj , c

∗
h2
) should be

greater than δ/2 which contradicts the first part.
Based on Observation 6, for any pair of vertices (vi, vj),

we define our matrix M for the weighted case such
that M [i, j] is the cost r induced by the longest train
(c1, . . . , cq) that can be fitted in [vi, vj ] if r ∈ I∗ and
0 < d(vi, c1), d(vj , cq) < δ/2. If we didn’t have either of
these two conditions, we assign M [i, j] = 0. It is clear that
r∗ is an element of M . Similar to the unweighted case,
we define M̄ [i, j] as max{M [i, i + 1], . . . ,M [i, j]}. Again,
we can see that M̄ is a row sorted matrix but may not be
sorted column-wise. Next, we show Proposition 3 is still
valid for our new definition of M and M̄ in the weighted
case.

Proposition 5 If M [i, j] = r∗, then for all i < j′ < j,
M [i, j′] ≤ r∗.

Proof. We proceed by contradiction. Suppose that
(vi, vj) induces r

∗ and ∃i < j′ < j such that M [i, j′] > r∗.
Let C = (c1, . . . , cq) be the longest train that can be fitted
in [vi, vj′ ] and induces the cost M [i, j′] on vi and vj′ . Also,
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let C ′ = (c∗h1
, . . . , c∗h2

) ⊆ C∗ be the train that induces
r∗ in [vi, vj ]. Now, c∗h1+q−1 < cq (because we assumed
that M [i, j′] > r∗) and |C| < |C ′| (because vj > vj′). We
consider two cases:

case 1: c∗h1+q ≤ vj′ : In this case, we could fit a
(q + 1)-train namely C ′′ = (c′1, . . . , c

′
q+1) in [vi, v

′
j ] which

contradicts the fact that C was the longest train in [vi, vj′ ].

case 2: c∗h1+q > vj′ : In this case, vj′ should be
covered from its right in C∗ (because c∗h1+q−1 < cq and
we assumed M [i, j′] > r∗). Also, the cost of covering
vj′ in C∗ should be no more than r∗. So, if wi ≤ wj′ ,
d(vi, c

∗
h1
) ≥ d(vj′ , c

∗
h1+q) and thus, we can fit a (q+1)-train

in [vi, vj′ ] which is a contradiction.
Now, assume that wi > wj′ . Let t1 and t2 be the

points on the right side of vj′ such that wd(vj′ , t1) = r∗

and wd(vj′ , t2) = M [i, j′]. Note that t2 > t1 and t2
is the mirror image of cq with respect to vj′ . Now,
d(c∗h1

, c1) < d(t1, t2) (because wi > wj′ and the cost that
vi induces on c∗h1

and c1 are r∗ and M [i, j′] respectively).
Also, because M [i, j′] ̸= 0, d(cq, vj′) < δ/2 (based on the
definition of M), cq + δ > vj′ + δ/2 which implies that
[t1, t2] ⊆ [c∗h1+q, cq + δ]. This contradicts the fact that
d(c∗h1+q, cq + δ) = d(c∗h1

, c1) < d(t1, t2) (see Figure 6). □

Figure 6: Proof of Proposition 5

The above proposition implies that Observation 3 is valid
for M and M̄ in the weighted case and so we can use Algo-
rithm 2 to find r∗ and get C∗. Based on Algorithm 2, the
time complexity of finding r∗ would be O((ng(n)+k) log n)
where g(n) is the time complexity for computing an ele-
ment of M̄ . In the Appendix, we show how we can compute
an element of M̄ in O(log3 n) time by spending O(n log3 n)
time for preprocessing. This gives us the following theo-
rem:

Theorem 2 The PCkC problem can be solved in
O((n log3 n+ k) log n) time.
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Figure 7: Three points eij1 , eij2 and eij3 located at dis-
tances Eij1 , Eij2 and Eij3 respectively and their generating
points. In this example, (vi, vj1) generates the maximum
of {M [i, j1],M [i, j2],M [i, j3]}.

Appendix: Computing an Element of M̄ for Weighted
Paths

In this section, we build a data structure such that for
any query pair (i, j) (i < j), it enables us to compute
M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j} in a sub-linear time.
Suppose that I∗ = [y0, y1]. We denote the x-coordinates
of the intersection points of Li and Ri (1 < i < n) with
line y = y1 by li and ri, respectively (see Figure 5). Note
that if for a pair (vi, vj′), lj′ < ri, it can not generate any
candidate value in I∗ (because of the way we built I∗) and
so, M [i, j′] = 0. Thus, we only consider the pairs (vi, vj′)
for which lj′ ≥ ri. Let us define the complement function
with respect to δ as:

compδ(x) =
⌈x
δ

⌉
× δ − x

We also denote compδ(li) and compδ(ri) by l̂i and r̂i re-
spectively where 1 < i < n. For any pair (i, j′) with j′ > i

and lj′ > ri, let Eij′ = compδ(lj′ − ri) = remδ(l̂j′ − r̂i)
and Dij′ = Eij′/(w

−1
i + w−1

j′ ) (note that wi and wj′

are the magnitudes of the slopes of Ri and Lj′ respec-
tively). Based on the geometric view, it is easy to see
that M [i, j′] = y1 − Dij′ if Dij′ ≤ |I∗| and zero other-
wise. So, the problem of finding M̄ [i, j] is equivalent to
find Dmin = min{Dij′ : i < j′ ≤ j}. It is convenient to
visualize this set as follows: for each i < j′ ≤ j, we con-
sider eij′ as the point located at (Eij′ , 0) on the x-axis.
Each eij′ has a half-line L+

ij′ attached to it with slope wi

and a half-line L−
ij′ from the origin with slope −wj′ (see

Figure 7). We can see that the distance between the in-
tersection point of L+

ij and L−
ij from the x-axis is indeed

Dij . We call this distance the D-coordinate of the inter-
section (when a point moves downward, its D-coordinate
increases). So, each value Eij′ generates exactly one value
Dij′ call it the D-value of Eij′ . Like the unweighted case,
we build a balanced binary tree T on top of the vertices
and in each node ν ∈ T we store {l̂h : vh ∈ span(ν)} as
an increasingly sorted sequence σ(ν). So, if we preprocess
each ν ∈ T such that for a given vertex vi, we can quickly
compute µi(ν) = min{Dih : vh ∈ span(ν)}, we can decom-
pose the set {vj : i < j′ ≤ j} into ∪ν∈Vi,jspan(ν) (as we

did in Section 2.1) and set Dmin = min{µi(ν) : ν ∈ Vi,j}
Let ν ∈ T be a fixed node. In the rest, we show how

we can preprocess ν such that given a query vertex vi, we
can efficiently compute µi(ν). First, note that the set of
half-lines {L−

ih : vh ∈ span(ν)} is independent of i. Also,
for each i, {Eih : vh ∈ span(ν)} is the union of two sorted
sequences σ1

i (ν) and σ2
i (ν), where σ

1
i (ν) (resp. σ

2
i (ν)) is ob-

tained by a shift (adding a constant value) of the elements
in σ(ν) smaller than (resp. greater than or equal to) r̂i.
Consider the lines L+

ij′(x)=wi(x−eij′) and L−
ij′(x)=−wj′x,

where eij′ is a variable (see Figure 7). When eij′ increases,
the D-value of eij′ (the intersection of L+

ij′ and L−
ij′) in-

creases linearly. Let f(x) be the minimum D-value gener-

ated by {eij′ = l̂j′ + x : j′ ∈ span(ν)}. We can see that
f(x) is the lower-envelope of a set of lines which can be
computed in O(|ν| log |ν|) time (|ν| is the number of ver-
tices in span(ν)) using the divide-and-conquer algorithm
(use the order in σ(ν) for breaking the vertices). Because
we need to work with the sub-sequences of σ(ν), we store
the entire recursion tree [15] (with the solutions of its sub-
problems) of the divide-and-conquer algorithm and denote
this tree by Ri(ν). Based on the above discussion, one way
to preprocess ν is that for each 1 < i < n, we compute and
store Ri(ν). Now, when we are given a vertex vi, we first
use binary search to get σ1

i (ν) and σ2
i (ν). Next, we use

Ri(ν) to get µi(ν). Note that this process costs O(log2 |ν|)
time (one O(log |ν|) factor because of the height of Ri(ν)
and the other for binary search to get the minimum point
of the envelopes in the nodes of Ri(ν) needed to construct
σ1
i (ν)(resp. σ2

i (ν)) at an specific x-coordinate determined
by the shift in σ1

i (ν)(resp. σ
2
i (ν)). Because the height of T

is O(log n), the total time complexity of computing M̄ [i, j]
would be O(log3 n). Note that the values σ(ν) of any (non
root) node ν ∈ T is a subset of the values of its parent
node. So, using the fractional cascading technique, this
cost can be reduced to O(log2 n) time.

The problem here is that if we build Ri(ν) for all
1 < i < n and all ν ∈ T , the time complexity of the prepro-
cessing phase would be O(n2 log2 n). In order to make the
preprocessing cost sub-quadratic, consider an internal node
ω of the recursion tree of ν (note that the vertices in ω are
independent of i). Let τi(ω) be the sequence of points in
ω who generate a line in its corresponding lower-envelope
in Ri(ν) where the order is according to the appearance of
the lines in the envelope.

Proposition 6 If for two indices i1 and i2, wi1 < wi2 ,
then τi2(ω) ⊆ τi1(ω)

The proof of the above proposition is straightforward using
elementary geometry. In order to use the above proposi-
tion, we first sort all the slopes increasingly into a sequence
(wi1 , . . . , win). Now, when we preprocess ω, instead of
building Ri(ω) for all 1 < i < n, we can use a binary tree
structure for the slopes which leads to O(|ω| log n) time
complexity for preprocessing ω. This, reduces the overall
preprocessing time to O(n log3 n) and increases the time
complexity of computing M [i, j] to O(log3 n).


