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Unstacking Slabs Safely in Megalit is NP-Hard

Kirby Gordon*

Abstract

We consider the problem of safely unstacking rectangu-
lar boxes through the lens of Megalit (ASCII, 1991). In
this Game Boy game, the player is confronted with a pile
of 1-by-k and k-by-1 megaliths (slabs). The goal is to
pull and push the slabs until they reach the floor, with-
out falling more than one cell at a time. We prove that
an associated problem is NP-hard. Along the way, we
introduce the drop-ladders problem, and prove that the
Game Gear game Popils (Tengen, 1991) is NP-hard.

1 Introduction

In the late-1990s, the quintessential box pushing game
Sokoban (B )EZ) was shown to be NP-hard indepen-
dently by Fryers and Greene [I1], Dor and Zwick [§], and
Uehara [21]. In this top-down game, the player controls
an agent who must push m boxes onto m locations.
Many papers have been written under the Push[Push]-
1/k/*-[X] banner (e.g., [I5} [7]), where the goal is to
reach a location under various physical models. Pulling
[2], pushing rows [I3], and rotation [12] have been stud-
ied, and Sokoban was proven PSPACE-complete [6].
The 1990s also saw the establishment of NP-hardness
for Blocks World [5]. In this grid-based problem, 1-by-1
blocks are stacked in columns and the goal is to unstack
and restack the blocks to be in a particular state, and
this led to ample subsequent research [14, 20), 16| [19].
In this paper, we consider a decision problem that has
ingredients of both box pushing and Blocks World.
o Side-view. The two-dimensional world has gravity
and a side perspective [I8| [10] like Block Dude [4,[3].
o Agent-based. The player controls an agent who is
vulnerable to falling objects, but not falling.
o Unstacking. Unlike Sokoban and Blocks World, the
goal is to safely bring the boxes to the ground floor.
o Fragility. Unlike Sokoban and Blocks World, the
blocks break when dropped more than one unit.
e Push and Pull. The agent can push and pull [I7].

1.1 Inspiration and QOutline

We were inspired by another 1990s artifact: Megalit
(ASCIL, 1991) for Nintendo’s Game Boy (see Figure [1)).
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Figure 1: Solving a Megalit level (a)—(f).

e Section [2] formalizes our Megalit decision problem.
Section [3| describes how any configuration of slabs
can be flattened with the help of additional slabs.
Section [] introduces a toy problem called Ladders.
Section [5] provides our reduction from Ladders.
Section [6] proves that our reduction is correct.
Section [1] concludes with final remarks.

2 Megalit: Gameplay and Decision Problem

Megalit puzzles involve slabs and the following rules:

1. The playfield is a grid with bottom-left cell at (0, 0).

2. The player may move left, move right, or jump. A
jump is 3 units high. While jumping, the player
may travel up to 2 units left or right.

3. If the player is horizontally adjacent to a slab and
on stable footing (i.e. not in midair), they may grab
the slab and push or pull it with them as they move.

(a) If the player moves and falls off a slab while
clutching a slab, then their grip is released.

(b) Only the slab being grabbed is pushed or
pulled; only one slab moves at a time.

(c) Slabs will fall down due to gravity when un-
supported. They cannot move upwards.

4. Slabs are horizontal 1-by-k or vertical k-by-1.

5. A slab x is supported by slab y when any cell of x
is directly above a cell of y (see Figure .

6. A level is failed if a slab falls > 2 units or the player
is crushed under a falling slab or trapped.

7. A cleared level has every slab touching the ground.

In the actual game, the slabs and player move hor-
izontally in %—unit increments. In our decision prob-
lem we ignore this complication and use 1-unit moves.
We also disallow pull and push moves that result in the
player falling, which affects rule[3a]as shown in Figure[2]
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Figure 2: In our Megalit decision problem the player must
step onto a solid cell when performing a pull or push.

Our decision problem Megalit(C, p) asks if a configu-
ration of supported slabs C can be flattened when the
player starts at position p. Our main result is below.

Theorem 1 The decision problem Megalit is NP-hard.

We will specify a slab s by a 4-tuple, (z1,y1,%2,¥2),
where (z1,y1) and (z2, y2) are the bottom-left and top-
right grid cells in s, respectively. We also let cells(s) be
the set of all cells in slab s, and cells(C) be the union of
cells(s) for s € C. Finally, we normalize our co-ordinate
system so that the minimum x and y coordinates of
slabs in C are both zero. In other words, (0,0) is the
bottom-left cell in the initial bounding box of the slabs.

3 Ramunto’s Extraction Algorithm

In this section, we show that a configuration of slabs
C can be safely flattened, so long as it is surrounded
by other slabs. Our flattening process resembles pulling
pizzas out of an oven using long wooden pizza trays
known as pizza peels. Thus, we name our approach after
our local pizza joint: Ramunto’s Brick House Pizza [23].

3.1 Extractable Slabs

We define a slab s = (1,41, 22, y2) to be extractable if
it has the following three properties:
X1: There is no slab cell to the right of s. That is, #t €
C with (z,y) € cells(t) and z > x5 and y1 <y < yo.
Xs: There is no slab cell above s. That is, #it € C with
(z,y) € cells(t) and y > yo and z1 < x < x5.
X3: There is no gap to the right of s in the row below it.
That is, if 3t € C with (x2 +4,y1 — 1) € cells(t) for
i > 2, then It’ € C with (xo+i—1,y1—1) € cells(t’).
For insight into this definition, the reader may skip
ahead to Figures Property X3 ensures that s can
be pulled along a series of slabs until it is transferred to
a pizza peel; Xo ensures that no slab t gets in the way
when s is pulled to the right; X; ensures that s does
not support any other slab t that could fall and break.

Lemma 2 FEvery non-empty configuration of slabs C
contains at least one extractable slab.

Proof. We find an initial candidate slab, and then
prove that it is extractable, or find a new candidate.
During this process, we maintain a rectangular search
region from (z.,y.) to (z*,y*), which are initially the
bottom-left and top-right cells in cells(C), respectively.

If 3s € C with (z*,y*) € cells(s), then s is extractable
since all three properties are vacuously true. Otherwise,
we let the first candidate be s = (z1,y1, x2,y2) € C that
maximizes the minimum of * — x5 and y* —ys9, breaking
ties by maximizing yo. In other words, s is the first slab
found by searching along down-right lines originating
from the top row proceeding from right-to-left. After
identifying the candidate, we reduce the search region.

e If s is horizontal, then we set (z.,y.) = (x1,y1 + 1

and (z*,y*) = (22,y*) (i.e., the cells above s.
o If s is vertical, then we set (x4, y«) = (z1 + 1,11
and (z*,y*) = (z*,y2) (i.e., the cells right of s).
If a slab is found in the new search region, then it is the
new candidate, and we repeat the process. Otherwise, s
is our finalized candidate. Finally, we need to prove that
s is extractable. We first assume that s is horizontal.
X1: There is no slab t with a cell above s since the
search that made s a candidate would have found t.
X5: There is no slab t with a cell to the right of s since
nothing was found in the final search area.
X3: There is no gap immediately below and right of s
since the search that made s a candidate would find
a slab t in the row immediately below s.
When s is vertical the same points hold, but with the

first two arguments interchanged. O
d r a | | d a ] I d a | I
C C C
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(a) A configuration (b) The first search (c) The second search

of slabs c. selects candidate c. selects candidate b.
d r a | d a | d

C | C | c |
| e | | e | | e |

(d) The third search (e) The fourth search (f) Ramunto’s algo-
selects candidate a. confirms candidate a. rithm will extract a.
Figure 3: Lemma considers successively smaller search re-
gions (green) along arrows (gray) from the top-right. The
confirmed candidate is extractable. The slabs are labeled by
their extraction order during Ramunto’s algorithm.

3.2 Pizza Oven Template

Let C be a configuration of slabs of width W and height
H, with the maximum width and height of slabs being
w and h, respectively. We surround this configuration
slabs with additional slabs as follows.

e Vertical slabs of height h below C.

e Horizontal slabs p; for —-W +1 <i < H — 1. Each
slab is w 4 1 units wider than the one above, with
the top slab pg_1 having width 2W + H + h —
4. These slabs are organized into a left staircase
immediately to the right of C.
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pizzas, and (gently) dropped.

Figure 4: The demolition layout for our example configuration C. The total width and height of C are W = 8 and H = 5,
respectively, while the maximum width and height of a slab in C are w = 3 and h = 3, respectively.

We denote the resulting configuration ¢’ = pizza(C).
This is illustrated in Figure [4] where the initial C form
the slabs inside of the pizza oven.

3.3 Extraction Algorithm

This section’s main result is illustrated in Figure

Theorem 3 If C is a configuration of slabs, then
Megalit(C’, p) = yes,

where C' = pizza(C) and p is the unique standing posi-
tion immediately to the right of C.

Proof. Algorithm [1] flattens Cﬂ g

Algorithm 1 Ramunto’s algorithm for flattening a con-
figuration of slabs C’ = pizza(C) where p is the unique
standing position immediately to the right of C.

procedure RAMUNTOS(C')
while |C| > 0 do
C + C — {s} for an extractable s = (z1,y1, T2, y2)
push peel px, as close to s as possible
pull s to be above the bottom peel p_w1
pull peels px;, Px;—1;-- ., P—w+1 to lower s
pull peels p-w+1,P-w+2 .., Pu—1 to alignment
end while
pull peels p_—w+1,P—w+2,---
end procedure

,pu-1 to flatten them

3.4 Flattening Goal to Target Location Goal

Theorem [3] helps us reduce the problem of flattening a
configuration of slabs to reaching a particular location.
For example, the player can complete Figure 4] so long
as they can exit the initial gold region to the right, since
Ramunto’s algorithm will work regardless of where the
slabs in C are located. We'll further refine this idea
by surrounding the gold region with tall vertical walls,
which ensures that the player can flatten the level if, and
only if, they can reach the top-right cell in the region. In
other words, we change the flattening goal into target
location goal, and then a climbing goal. Climbing is
further discussed in the following toy problem.

ISeveral temptingly simple greedy algorithms do not work.
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(g) Drop e to the ground by pulling out peel p_s.

Figure 5: A snapshot of Ramunto’s algorithm extracting slab
e from configuration C. After e reaches the ground in (g),
the player realigns the peels as in (a) in order to extract f.

4 A Toy Problem

In this section, we introduce an NP-complete toy prob-
lem that resembles several well-established metatheo-
rems [9] [22] [1]. The problem involves drop-ladders and
we’ll illustrate it by proving that Popils is NP-hard.

4.1 Drop-Ladders

A drop-ladders problem consists of ¢ ladders and f + 1
floors. Each ladder extends from the ground floor up
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to the top floor and consists of some number of rungs.
More specifically, there are 2f possible locations for a
rung: on floor ¢ and between floor 7 and 7 + 1, for 1 <
i < f (where ¢ = 1 denotes the bottom floor). If a
ladder contains a rung on floor 7, then the player can
climb from floor i to floor ¢ 4+ 1 using this ladder; the
rungs between floors cannot (immediately) be used to
climb. In addition, when the player is on the bottom
floor, they have the ability to lower any ladder by one
unit. Lowering a ladder moves all of its rungs down
one position, so a rung that was between floor ¢ and
14 1 moves to floor 4, thus allowing the player to climb
upward. Similarly, a rung on floor ¢ moves between floor
1—1 and floor 4, eliminating its ability to help the player
climb upward. The player starts on the bottom floor,
and their goal is reach the top floor. Figure [6] provides
an illustration.

(a) A Ladders problem.

Figure 6: (a) A Ladders problem with ¢ = 5 ladders and
f+1 = 3floors. It is a yes instance since the player can climb
from the ground floor to the top floor using the rungs on the
first ladder. Alternatively, they can drop the fourth ladder,
then climb the fourth ladder and fifth ladder, as in (b). This
level illustrates our reduction from ¢ in , with ladders
for variables vi1—vs from left-to-right, and floors for C1 =
(v1 Vua V—vy) and Ca = (v1 V—w2 Vus) from bottom-to-top.
The solution in (b) corresponds to the satisfying assignment
v1 = v2 = v3 = vs = True and vy = False, with C1 satisfied
by v4a = False and Cs satisfied by vs = True.

(b) A solution.

4.2 Ladders is NP-Complete
We now prove that Ladders is NP-complete.

Lemma 4 Ladders is NP-complete.

Proof. NP-hardness follows from a simple 3-SAT re-
duction, as illustrated in Figures [6H7] for the following:

dp=CyNCy = (’Ul \/1)2\/"114) /\(1)1 \/—|’U2\/’U5). (1)

In particular, lowering a ladder corresponds to chang-
ing the assignment of a variable from True to False.
Ladders is in NP since a suitable certificate specifies
which ladders to drop and to climb. O

The following observation strengthens Lemma [

Observation 1 [t is possible to climb to floor i if
and only if the variable assignment associated with the
dropped ladders satisfies clauses Cq,Ca, ..., C;.

True True True True True

“positive” “negative” “absent”
C, v;in C;  —w;in C; otherwise
g A~
G Ul U0 gy Ul U Clal= G |_| Cj
v v v

U V2 U3 Vg U5

(a) Template for n = 5 variables (b) Rungs are added based on
and m = 2 clauses. literal-clause membership.

Figure 7: Reducing 3-SAT to Ladders using (a) a template,
with (b) added rungs. Specifically, if v; is in clause C;, then
ladder ¢ has a rung on floor j; if —w; is in clause Cj, then
ladder i has a rung between floor j and floor j + 1.

4.3 Application: Popils is NP-Hard

Another 1990s handheld puzzler is Tengen’s Magical
Puzzle Popils ((&1 1991) / Popils (2= 1992) for Sega’s
Game Gear. Each round follows the save-the-princess
trope. Its mechanics and elements include the following:

e Normal blocks. Breakable by punching left or right,

headbutting up, or kicking down.

e Gold blocks. Unbreakable and can be stood on.

e Black blocks. Empty and cannot be stood on.

e Ladders. The player can walk across or on top.
When the player breaks a normal block, all of the blocks
stacked above in the same column will fall down one cell.
The princess paces horizontally and never intentionally
moves vertically; both characters are subject to gravity.
The Popils decision problem generalizes the single-screen
rounds to be arbitrarily large. See Figure [§]

a. Start b. Punch c. Fall

d.Punch e.Punch f. Head g. Done h. Legend

g'!il,! player
e L Ll

{\?iprincess GEAR TENGEN
i. Box art ([®J)
Figure 8: Round 1 in Popils with partial legend and box art.

We now illustrate Ladders with two reductions to
Popils. The first uses the elements in Figure [8h| and has
simpler player movements, while the second omits gold
blocks and has simpler rung gadgets. See Figures [0HIO0|
and for details, where ladders cells in the rung
gadgets are tinted green, pink, or blue for readability.

In both reductions, a drop-ladder occupies one col-
umn with a normal block at its base. The player starts
in a cellar that appears below the first clause. The cellar
is used to set the value of the variables. More specifi-
cally, the player can drop a drop-ladder by headbutting
its normal block. Additional ladders on the right allow
the player to exit a clause and enter the next clause,
with the Princess pacing above the last clause. Each
clause has a lower-half and an upper-half. To traverse a



CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

clause, the player walks right-to-left on the lower-half,
climbs a ladder associated with a satisfying literal, and
then walks left-to-right on the upper-half.

positive negative absent

.orlEl@ |_| @ | @

RE g
.orlEl@ |_| 0] I I I I
(a) Four cells. (b) Implementing the three gadgets.
Figure 9: Rung gadgets using four ladder or black square
cells. To understand (b) note that O and @ allow climbing
undropped columns, while @ and @ allow climbing dropped
columns. The remaining ladder cells allow walking past

(un)dropped columns on the lower and upper halves.

ryyryyy vy

ddd444

U1 Uy U3 Uy

(a) Template. (b) Popils level for ¢.

(c) Solution.

Figure 10: Reducing Popils to Ladders for formula ¢ in
with n = 5 variables and m = 2 clauses. The provided
solution involves headbutting and dropping the v2 and wv3

columns, and then using v; =
and vo = F' to satisfy Cy =

T to satisfy C1 = (v1Vu2V-ws)
(1)1 V vy V ’Us)‘

positive negative absent

o ®
=or|§|® ||—| ! |_||ﬁ i

| =l

(a) Three cells. (b) Implementing the three gadgets.
Figure 11: Rung gadgets using three ladder or black
square cells. To understand (b) note that @ allows climb-
ing undropped columns, while allows climbing dropped
columns. The ladder in the absent case allows walking past

(un)dropped columns on the lower and upper halves.

C,

C

%
U1 V2 U3 Uy Vs

(a) n =5 and m = 2. (b) Popils level for ¢.

(¢) Solution.
Figure 12: Reducing Popils to Ladders for formula ¢ in .
The provided solution follows the same format as Figure
but requires a more complicated path.

The second reduction gives the following theorem.

Theorem 5 Popils is NP-hard with only ladders, nor-
mal blocks, and black blocks, even if the player can’t fall.

5 Reduction from 3-SAT

Now we describe our reduction from 3-SAT to Megalit.
More specifically, we describe the configurations C that
will be placed in the ‘pizza oven’ as per Section [3] We
refer to these configurations as haunted houses. A sam-
ple is given in Figure We define two new terms:
e A cornerstone is a lower corner cell of a slab. Ver-
tical slabs have 1, while horizontal slabs have 2.
e A slab is mobile if the player can stand next to a
cornerstone of the slab and push or pull it.

5.1 Primitive Gadgets: Tables and Chunks

A table{ﬂ consists of a tabletop supported by a pair of
legs, which are 2 or 3 units in height. This gadget ap-
pears in many variations, as seen in Figure Only one
leg is needed to support the tabletop, which allows the
other leg to be pulled away. The player may pass under-
neath a table, by pulling and pushing the legs to reset
them as needed, or over it (given that nothing on the
tabletop obstructs passage). They may also re-purpose
a leg as a climbing aid elsewhere in the level.

nTTH=E"T

Figure 13: Tables come in many different sizes.

A chunk is a row of adjacent vertical slabs in any
plural quantity. Notably, a chunk is extremely stable
because only its two exterior slabs have exposed corner-
stones. It follows that a chunk is completely immobile
if the player cannot access either of these cornerstones.

5.2 Variable Towers

Variables are modeled by vertical structures called vari-
able towers (see Figure . The base of each variable
tower is a pit of truth, as shown in Figure

(a) True (default). (b) False (modified).

Figure 14: A pit of truth in its initial and modified state.

By pulling out the left leg of the underlying table,
the player can jump up into the pit. To escape the pit,
they must move the two horizontal slabs, as shown in
Figure The net effect is that the tower is lowered
by 2 units. This is analogous to dropping a ladder in
the toy problem, or setting the associated variable to
False. We note that a horizontally-mirrored version of
the pit is used at the base of the last variable tower.

2Historically, this stone table structure is known as a dolmen.
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Above a pit we stack literal gadgets for that variable.
These gadgets come in three flavors (see Figure [15)).

positive negative absent
i T 1o
[ LY

Figure 15: The three types of variable literal gadgets.

Each literal has a horizontal 9x1 slab at the base,
then a chunk covering its full width, and finally a small
table with multiple tabletop layers. Each gadget is 14
units tall, but the relative placement (and height) of the
legs change based on the type of literal. As in our toy
problem, the positive literals will be useful for climbing,
unless the associated variable is negated, which causes
its negative literals to become useful.

5.3 Scaffolding

Scaffolding towers between the variable towers enable
climbing. A scaffolding tower is supported by a pair of
support gadgets (yellow), which consist of a table with a
tall vertical slab on top. The base of a scaffolding tower
also includes a pyramid gadget (yellow), which allows
the player to climb up to the rest of the scaffolding. See
the bottom-middle of Figure

L | L |
b o b o

Figure 16: Illustrating two variable towers (left and right)
with scaffolding (middle) between them.

A scaffolding block has two horizontal slabs support-
ing chunks of height 4 (red), each of which supports one
leg of a large table (yellow). This table has 4 tabletop
layers, and on top of it are two small tables (purple)
on either side of a 5-unit vertical slab (maroon). This
scaffolding tower can be seen in the center of Figure
If the player enters a scaffolding block from the bottom,
they can access either side of the gadget, but cannot
jump to the upper surface without a climbing aid (anal-
ogous to rungs from the toy problem). The mapping of
these jumps to the satisfiability of the given problem is
the discussion of Section [6l

6 Proof that Megalit is NP-Hard

The player must complete a constructed level in two
stages — ascend to the top of the “haunted house,” then
flatten it using “pizza peels.” We complete our proof of
Theorem [1| by proving that the first stage can be com-
pleted if, and only if, the 3-SAT instance is satisfiable.
More specifically, Observation [I| holds. The following
lemmas prove the two directions.

Lemma 6 Given a satisfiable instance of 3-SAT, the
level generated by the reduction rules is climbable.

Proof. Suppose we are given a satisfiable instance of
3-SAT and build a Megalit level by the procedure in
Section Next, we let the player dislodge the truth-
setting slabs for each variable as would correspond to a
satisfying assignment for the instance of 3-SAT. Since
the given instance of the problem is satisfiable, each
clause has at least one positive literal set to “true” or
one negative literal set to “false.”

In both of these cases, the corresponding gadget rep-
resenting the variable literal is offset by exactly one unit
above its neighboring scaffolding. We can see that the
truth-assignment created this useful offset, just as it
made the ladder rungs accessible in Lemma [l As a
result, the player is able to borrow an extra table leg
from the literal and bring it into the scaffolding region
close enough to the center that they can use it as a
“ladder rung” to overcome the tall jump from the lower
scaffolding surface to the upper one. See Figure

Since this occurs for each clause, and therefore for
each layer of scaffolding and literals, the player can jump
all the way to the top of the house by moving laterally
until they reach the satisfying literal, using its table leg
to climb to the next layer, and repeating this process for
each layer. In accordance with Observation[I] this climb
is possible because the satisfying variable assignment
provided a climbing aid on each “floor.” O

Observation 2 [t is impossible to move a tabletop on
an isolated table; see our physical model in Section[3

Observation 3 FEven when two tables are adjacent on
the same surface, it is impossible to move either table-
top, provided the leg-heights of the tables are different.

Lemma 7 Given an unsatisfiable instance of 3-SAT,
the level generated from the reduction has no escape
routes from the haunted house.

Proof. Suppose that we are given an unsatisfiable in-
stance of 3-SAT. We must show that no alternative exits
from the haunted house exist for the player. Referencing
Figure we will proceed with an examination of each
gadget and then each zone where gadgets may interact
with one another.
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Figure 17: A full haunted house, with surrounding structure (walls and floor) and labeled regions, generated from the 3-SAT
instance ¢ = C1 A Cz with C1 = (v1 V —w2 V v3) (middle layer) and Co = (v2 V —ws V —wy) (top layer). The player is shown at
their starting location (orange circle) and the additions in blue ensure that the player may only exit the house via its top level.
The added slabs on top of each scaffolding tower enable traversal along the “roof” and pairs of tall vertical slabs bookend
the house as per Section Note that the vertical “floor” slabs are much taller than shown here, and a set of pizza peels is

present immediately to the right of this structure.

In

Figure 18: A +1 offset allows a table leg from the tower to
be brought into the scaffolding region. The player cannot
climb the scaffolding further without this aid.

The player has free lateral movement in the cellar and

may encounter four notable structures:

1. The Pit. Due to the manner in which it traps the
player, the pit has an isolating effect in all respects
besides the intended 2-unit tower drop, and thus
cannot affect the rest of the haunted house.

2. Scaffolding Support. Per Observation [3| the only
way for the player to interact with the support’s
table is to pass beneath it. The mobility of the
long vertical support slab is severely limited, as it
cannot be safely dropped from the table and has
only 1 unit of available movement left or right.

3. Pyramid. The aforementioned constraints on tables
apply to the pyramid’s base as well. The vertical
slabs covering the tabletop’s surface form a chunk,
preventing access to each other’s cornerstones.

4. Thick Walls. Double-slab walls blockade both sides
of the house and are immobile.

None of these can interact with the larger structure

except for the pit’s intended transformation. Proceed-
ing upwards, the player reaches a series of scaffold-
ing/tower combinations. By itself, the scaffolding offers
only two surfaces on which the player can stand and no
mobile parts except the pairs of table legs. These legs
cannot be dropped between scaffolding layers or sur-
faces within a layer because they would shatter. In an
isolated tower, a variable literal offers the player only
one surface on which to stand, from which the player
can do nothing but pass underneath the table. At the
edge of the house, the double-slab wall is again present,
and equally immovable.

Finally, we consider interactions between the scaffold-
ing and variable literals, characterized by the height of
the literal relative to the scaffolding. For example, the
surface of a true/negative literal is +3 units above the
lower surface of the adjacent scaffolding.

e +3 (True/Negative): This offset is too high to
safely drop a table leg from the tower’s literal onto
the scaffolding region. It is possible to use a scaf-
folding leg as a step down, creating an effective off-
set of +2, but there is no way to move it any closer
to the scaffolding’s center or cross the wide gap
from there to the scaffolding’s upper surface.

o +1 (False/Negative & True/Positive): As described
in Lemma [6] this offset lets the player safely bring
a table leg from the tower onto the scaffolding’s
lower surface, and use it as a ladder rung to reach
the upper surface and continue climbing.

e —1 (False/Positive & True/Absent): Since slabs
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may never move upwards (rule [3c), this table leg
is stuck on the tower’s surface. It is possible to
drop a scaffolding leg into the tower section, but
this offers no further productive moves. Note that
the scaffolding leg can be used to replace the leg of
a variable literal and lower the tower, but doing so
will trap the player.
e —3 (False/Absent): The absent literal once again
has no impact on the player’s climbing ability.
Since no manipulations of slabs within a layer of scaf-
folding allow the player to climb higher without a posi-
tive evaluation of a variable, and there is no way to cause
a collapse except for the 2-unit drop of a tower that oc-
curs when escaping a pit, the player cannot escape the
haunted house unless they create a positively-evaluated
variable in each layer of scaffolding. This is equivalent
to satisfying each clause in an instance of 3-SAT, but
the given instance was unsatisfiable. Hence, the player
cannot exit the haunted house. O

7 Open Problems

Sharpness.  Is Megalit NP-complete or PSPACE-
complete? Membership in NP is unclear since slabs can
move back-and-forth and downward, but not upward.
Restrictions. Toward NP-completeness, one could con-
sider slabs of constant size.

Generalizations. Toward PSPACE-completeness, one
could add rectangular slabs, or immovable walls.
Physics. Megalit is not faithful to the physics of Megalit.
In fact, %—unit moves and rule invalidate Lemma
One could also consider center of gravity physics.
Fragility. Block pushing games and problems seldom
consider the fragility of the objects being moved.
Unstacking. Other unstacking games could provide in-
spiration like @Billion (SETA, 1990) for Game Boy.

The authors would like to thank the anonymous ref-
erees whose feedback helped improve this paper.

References

[1] G. Aloupis, E. D. Demaine, A. Guo, and G. Viglietta.
Classic nintendo games are (computationally) hard.
Theoretical Computer Science, 586:135-160, 2015.

[2] J. Ani, S. Asif, E. D. Demaine, Y. Diomidov, D. H. Hen-
drickson, J. Lynch, S. Scheffler, and A. Suhl. PSPACE-
completeness of pulling blocks to reach a goal. J. Inf.
Process., 28:929-941, 2020.

[3] J. Ani, L. Chung, E. D. Demaine, Y. Diomidov, D. Hen-
drickson, and J. Lynch. Pushing blocks via check-
able gadgets: PSPACE-completeness of Push-1F and
Block/Box dude. In Proceedings of the 11th Interna-
tional Conference on Fun with Algorithm (FUN 2022),
volume 226 of LIPIcs, page 3:1-3:30, 2022.

[4] A. Barr, C. Chang, and A. Williams. Block Dude puz-
zles are NP-hard (and the rugs really tie the reductions

[13]

[17]

[18]

[19]

together). In Proceedings of the 33rd Canadian Confer-
ence on Computational Geometry, Dalhousie Univer-
sity, Halifaz, Canada, August 10-12, 2021, 2021.

S. V. Chenoweth. On the NP-hardness of blocks world.
In AAAI pages 623-628, 1991.

J. Culberson. Sokoban is PSPACE-complete. In Pro-
ceedings of the 1st International Conference on Fun
with Algorithm, pages 65-76, 1998.

E. D. Demaine and M. Hoffmann. Pushing blocks is
NP-complete for noncrossing solution paths. In Proc.
18th Canad. Conf. Comput. Geom, pages 65—68, 2001.

D. Dor and U. Zwick. Sokoban and other motion plan-
ning problems. Computational Geometry, 13(4):215 —
228, 1999.

M. Forisek. Computational complexity of two-
dimensional platform games. In F'UN, 2010.

E. Friedman. Pushing blocks in gravity is NP-hard.
Unpublished manuscript, March, 2002.

M. Fryers and M. T. Greene. Sokoban, 1995.

A. Greenblatt, O. Hernandez, R. A. Hearn, Y. Hou,
H. Ito, M. J. Kang, A. Williams, and A. Winslo. Turn-
ing around and around: Motion planning through thick
and thin turnstiles. In CCCG, 2021.

A. Greenblatt, J. Kopinsky, B. North, M. Tyrrell, and
A. Williams. Mazezam levels with exponentially long
solutions. In 20th Japan Conference on Discrete and
Computational Geometry, Graphs, and Games (JCD-
CGGG 2017), page 2, 2017.

N. Gupta and D. S. Nau. On the complexity of blocks-
world planning. Artificial Intelligence, 56(2-3):223-254,
1992.

M. Hoffmann. Push-* is NP-hard. In CCCG, 2000.

M. Johnson, C. Jonker, B. v. Riemsdijk, P. J. Feltovich,
and J. M. Bradshaw. Joint activity testbed: Blocks
world for teams (BWAT). In International Workshop
on Engineering Societies in the Agents World, pages
254-256. Springer, 2009.

A. G. Pereira, M. Ritt, and L. S. Buriol. Pull and
pushpull are pspace-complete. Theoretical Computer
Science, 628:50-61, 2016.

M. Ritt. Motion planning with pull moves.
preprint arXiv:1008.2952, 2010.

L. She, S. Yang, Y. Cheng, Y. Jia, J. Chai, and N. Xi.
Back to the blocks world: Learning new actions through
situated human-robot dialogue. In Proceedings of the
15th annual meeting of the special interest group on dis-
course and dialogue (SIGDIAL), pages 89-97, 2014.

J. Slaney and S. Thiébaux. Blocks world revisited. Ar-
tificial Intelligence, 125(1-2):119-153, 2001.

R. Uchara. HOHZHZAh - HERLS £ D2
[Problems that didn’t see the light of day Part 2].
www.jaist.ac.jp/ uehara/etc/la/99/index.html, 1999.
G. Viglietta. Gaming is a hard job, but someone has to
do it! Theory of Computing Systems, 54:595—-621, 2014.

M. Willey. Ramunto’s brick house pizza. [Online;
accessed 1-May-2022].

arXi


https://www.jaist.ac.jp/~uehara/etc/la/99/index.html
https://ramuntos.com/

	Introduction
	Inspiration and Outline

	Megalit: Gameplay and Decision Problem
	Ramunto's Extraction Algorithm
	Extractable Slabs
	Pizza Oven Template
	Extraction Algorithm
	Flattening Goal to Target Location Goal

	A Toy Problem
	Drop-Ladders
	Drop-Ladders is NP-Complete
	Application: Popils is NP-Hard

	Reduction from 3-SAT
	Primitive Gadgets: Tables and Chunks
	Variable Towers
	Scaffolding

	Proof that Megalit is NP-Hard
	Open Problems

