
CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Online Square Packing with Rotation

Shahin Kamali* Pooya Nikbakht�

Abstract

We consider the square packing problem, where the goal
is to place a multiset of square items of different side-
lengths in (0, 1] into a minimum number of square bins
of uniform side-length 1. We study the problem under
the online setting, where the multiset of items forms
a sequence revealed in an online and sequential man-
ner. An online algorithm must place each item into a
square bin without prior knowledge of the forthcoming
items. Most existing results assume square items are
placed orthogonally to the square bins (that is, parallel
to the sides of the bins). In the presence of rotation,
Kamali and Nikbakht [COCOA 2020] proved that the
offline problem is NP-hard and admits an APTAS in an
augmented setting. This paper investigates the online
problem when item rotation is allowed. We introduce a
linear-time algorithm that achieves an asymptotic com-
petitive ratio of 2.306 when square-items have any size
x ∈ (0, 1], and a better asymptotic competitive ratio of
1.732 when x ∈ (0, 1/2]. We also study another prob-
lem where items, instead of squares, are isosceles right
triangles (half-squares) and present a linear-time online
algorithm with an asymptotic competitive ratio of at
most 1.897.

1 Introduction

An instance of the square packing problem is defined
with a multiset of squares-items of different sizes in the
range (0, 1]. The goal is to place these squares into a
minimum number of unit square-bins in a way that two
square items placed in the same square bin do not in-
tersect. At the same time, they can still “touch” each
other. The problem is a generalization of the classical
bin packing problem into two dimensions, and we some-
times refer to the squares-items simply as “items” and
square-bins as “bins.” A square item can be recognized
by its side-length, which we refer to as the size of the
square.
In the offline setting, all square-items are given in ad-

vance, and the algorithm can process them as a whole
before placing any item into a bin. In particular, the
algorithm can sort squares in decreasing order of their

*Department of Electrical Engineering and Computer Science,
York University, Toronto, Canada, kamalis@yorku.ca

�Department of Computer Science, University of Manitoba,
Winnipeg, Canada, nikbakhp@myumanitoba.ca

sizes, which comes in handy in designing algorithms. In
the online setting, the multi-set of items forms a se-
quence which is revealed online and sequentially. When
an item is revealed, an online algorithm must place it
into a square bin without prior knowledge of forthcom-
ing items. The decisions of an online algorithm are ir-
revocable.

Square packing has many applications in practice.
One application is cutting stock where bins represent
stocks (e.g., wood boards) and items are requests to
squares of specific sizes. When requests arrive, an al-
gorithm must cut the stock to provide the pieces that
match the requests. This cutting process is equivalent
to placing items into bins. Note that cutting stock aims
to minimize the number of stocks, which also matches
a square packing goal. We note that in many practical
applications, requests arrive in an online manner, and
the stock should be cut without prior knowledge about
future requests. It is needless to say that the cutting
process is irrevocable, which gives an inherently online
nature to these applications of square packing.

There has been a rich body of research around square
packing. All existing results except for recent work on
the offline problem by Kamali and Nikbakht [20] assume
that squares are not allowed to rotate; that is, the sides
of square-items should be parallel to the square-bins.
While this assumption makes the combinatorial analysis
of the problem more straightforward, it comes at a cost.
For example, consider an instance of the problem formed
by n items of size 0.36. If we do not allow rotation, any
bin can include at most four items, giving any algorithm
a total cost of n/4. Allowing rotation, however, five
items fit in each bin, and we can reduce the cost to
n/5 (see Figure 1). As a result, the number of required
bins is decreased by n/20, which is a notable saving in
practice, e.g., for cutting stock applications.

In [20], it was proved that the offline problem is NP-

Figure 1: If all items have a length 0.36, allowing rota-
tion helps pack 5 items per bin instead of 4.



34th Canadian Conference on Computational Geometry, 2022

complete in the presence of rotation and admits an AP-
TAS in an augmented setting, where the bins of the
online algorithm are slightly larger than those of the
optimal offline algorithm. In this paper, we consider
the online square packing problem with rotation:

Definition 1 In the online square packing with rota-
tion, the input is a sequence σ = ⟨a1, a2, . . . , an⟩ which
is revealed in an online manner. At time-step t, the
value of at is revealed, and an online algorithm has to
place a square of size at into a bin, using any degree of
transition and rotation, such that no two items in the
same bin intersect (they can touch). The algorithm’s
decisions are irrevocable and are made without knowing
the values of at′ for t

′ > t. The goal is to pack all square
bins into a minimum number of squares of unit size.

The asymptotic competitive ratio is the standard
method for analyzing online packing problems. An al-
gorithm A has a competitive ratio of c if there exists a
constant c0 ≥ 0 such that, for all n and for all input
sequences σ of length n, we have A(σ) ≤ c ·Opt(σ)+ c0
where A(σ) and Opt(σ) denote the costs of A and an
optimal offline algorithm Opt (with unbounded com-
putational power) for processing σ, respectively.

1.1 Related Work

The 1-dimensional bin packing has been studied exten-
sively in offline and online settings (e.g., [13, 12, 6, 7, 18,
1]). In the 1-dimensional setting, each item has a size in
(0, 1], and each bin has a capacity of 1. The offline, 1-
dimensional bin packing problem is NP-hard [13], and
the best existing result is an algorithm that opens at
most Opt(σ) + O(logOpt(σ)) bins σ [16]. In the on-
line setting, the best existing algorithm has a compet-
itive ratio of 1.578 [2], while no online algorithm has a
competitive ratio better than 1.54278 [3].

There are many ways to extend bin packing to higher
dimensions (see [5] for a survey). Packing axis-aligned
square items into square bins is perhaps the most
straightforward extension. In the offline setting, the
problem is NP-hard [21], and there exists an APTAS
for the problem [4]. In the online setting, the upper and
lower bounds have been improved a few times [22, 10].
The best existing algorithm has a competitive ratio
of 2.1187 [14] while the best existing lower bound is
1.6707 [15]. Almost-online square (and triangle) pack-
ing, where an online algorithm receives some “advice”
about the input sequence, is studied in [17, 19].

Another generalization of bin packing into two dimen-
sions assumes items are axis-aligned rectangles. This
problem is also studied extensively (see [5] for details).
In particular, a variant of this problem assumes rect-
angles can be rotated by exactly ninety degrees (see,
e.g., [8]). We note that rotation by ninety degrees is

not relevant for square packing and is quite restrictive
compared to the rotations considered in this paper.

1.2 Contribution

We study the online square packing problem and present
an online algorithm that achieves a competitive ratio of
2.306 for the square packing problem. Our algorithm
is based on classifying squares based on their sizes and
placing squares of similar sizes tightly, possibly using
rotations, in the same bins. This approach was previ-
ously used to introduce different families of Harmonic
algorithms for the classic bin packing in both one di-
mension and higher dimensions. However, the presence
of rotations makes our classification and analysis dif-
ferent from the previous work. While analyzing the
algorithm, we also consider sequences where the item
sizes are at most 1/2 and show that our algorithm has a
competitive ratio of at most 1.732 in this case. We also
study another problem where items, instead of squares,
are isosceles right triangles (half-squares), also called
“tans”, and present a linear-time online algorithm with
an asymptotic competitive ratio of at most 1.897.

2 Online Square Packing

In this section we introduce our square packing algo-
rithm called Square-Rotate.

2.1 Item Classification

We classify squares by their side lengths, which we refer
to as the “size” of the items. Square-Rotate packs
squares of each class separately from other classes.

In total, there are 13 classes of squares. Square items
with sizes in the range (0, 0.1752] are in class 13; we re-
fer to this class as the tiny class, and items that belong
to it are called tiny items. We refer to items that be-
long to class i ∈ [1, 12] as regular items. For each class
i ∈ [1, 12], the range of items in the class is specified
as (xi, xi−1] (for convenience, we define x0 = 1). The
values of xi’s are defined so that a certain number of
items, denoted by Si, of class i can fit in the same bin.
The specific range of item sizes for each class i ∈ [1, 12]
and values of Si are derived from the best-known or
optimal results on the congruent square packing prob-
lem [11]. This problem asks for a square’s minimum
size c(j) that can contain j unit-sized squares. A scal-
ing argument, where the container size is fixed to be 1,
gives values of u(j)’s when the goal is to pack j iden-
tical squares of maximum size u(j) into a unit square.
Table 1 provides the scaled best-known/optimal u(j)
values for 1 ≤ j ≤ 36. These scaled numbers give the
specific ranges that we use for classifying items.

Items of class 1 have sizes in the range (1/2, 1], and
we have x1 = 1/2. Note that exactly S1 = 1 item of



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

(a) Class 1: x ∈
(0.5000, 1.0000]

(b) Class 2: x ∈
(0.3694, 0.5000]

(c) Class 3: x ∈
(0.3333, 0.3694]

(d) Class 4: x ∈
(0.2697, 0.3333]

(e) Class 5: x ∈
(0.2579, 0.2697]

(f) Class 6: x ∈
(0.2500, 0.2579]

(g) Class 7: x ∈
(0.2139, 0.2500]

(h) Class 8: x ∈
(0.2073, 0.2139]

(i) Class 9: x ∈
(0.2047, 0.2073]

(j) Class 10: x ∈
(0.2000, 0.2047]

(k) Class 11: x ∈
(0.1779, 0.2000]

(l) Class 12: x ∈
(0.1752, 0.1779]

Figure 2: Placement of regular square items of class i ∈ [1, 12] in their respective bin. It is possible to pack i square
items of class i into a single square bin [11].

j u(j) opt./b.k. j u(j) opt./b.k.

1 1.0 opt. 19 0.2047 b.k.
2-4 0.5 opt. 20-22 = 0.2 b.k.
5 0.3694 opt. 23-25 = 0.2 opt.
6-9 0.3333 opt. 26 0.1779 b.k.
10 0.2697 opt. 27 0.1752 b.k.
11 0.2579 b.k. 28 0.1716 b.k.

12-13 = 0.25 b.k. 29 0.1685 b.k.
14-16 = 0.25 opt. 30-33 ≈ 0.1667 b.k.
17 ≈ 0.2139 b.k. 34-36 ≈ 0.1667 opt.
18 ≈ 0.2073 b.k.

Table 1: Optimal (opt.) or best-known (b.k.) values of
u(j) for 1 ≤ j ≤ 36 when the goal is to pack j identical
squares of the largest size u(j) into a unit square. Values
of u(j) are the scaled values of the known results on
congruent square packing [11].

class 1 can fit in the same bin. For i ∈ [2, 12], Si is the
largest number of items of size xi−1 that fit in the same
bin. For example, for i = 2, we have S2 = 4 because
x1 = 1/2, and at most 4 items of size 1/2 fit in the same
bin. Moreover, xi is defined as the largest value so that
Si + 1 items of size xi do not fit in the same bin. For
example, we have x2 = 0.3694 because, according to
Table 1, S2+1 = 5 squares of size larger than 0.3694 do
not fit in the same bin (with respect to the best known
results).

The respective range of items for each class, as well as
the values of Si, is presented in Table 2. For example,
a square is in class 1, 2, or 12 if its side size is in the
interval (0.5, 1], (0.3694, .5], or (0.1752, 0.1779], respec-
tively. In Figure 2, it is specified how Si items of the
largest size in class i can fit into a square bin. We refer
to [11] for details on the unit square packing problem.

2.2 Packing Regular Items

For each class i (1 ≤ i ≤ 12), the algorithm has at
most one active bin of type i. When a bin of type i
is opened, it is declared as the active bin of the class,
and Si square “spots”, each of which having a size equal
to the largest square of class i, are reserved in the bin.
Upon the arrival of an item of class i, it is placed in one
of the Si spots of the active bin. If all these spots are
occupied, a new bin of type i is opened. This ensures
that all bins of type i, except potentially the current
active bin, include Si items.

2.3 Packing Tiny Items

For packing tiny items, the algorithm uses a different ap-
proach, proposed by Epstein and van Stee [9]. Briefly, it
maintains at most one active bin for placing tiny items.
The algorithm maintains a partitioning of the active bin
into sub-bins whose sizes are 2−i for non-negative, inte-
ger values of i. Upon the arrival of a tiny item of size
x, the smallest sub-bin of size y > x is repeatedly par-
titioned into four sub-bins of size y/2, up to the point
that further partitioning results in sub-bins of size less
than x. At this point, x is placed in one of the resulting
partitions. Note that if there is no sub-bin of size y ≥ x,
the active bin is closed, and a new one is opened.

Lemma 1 [9] Consider the square packing problem
(without rotation) in which all items are of size at most
1/M for some integer M ≥ 2. There is an online al-
gorithm (as described above) that creates a packing in
which all bins, except possibly one, have an occupied
area of size at least (M2 − 1)/(M + 1)2.



34th Canadian Conference on Computational Geometry, 2022

Class Side length x Si Occupied Area Weight Density

1 (0.5000, 1.0000] 1 > 1(0.250)=0.250 1 < 4.000
2 (0.3694, 0.5000] 4 > 4(0.136)=0.544 1/4 < 1.838
3 (0.3333, 0.3694] 5 > 5(0.111)=0.555 1/5 < 1.801
4 (0.2697, 0.3333] 9 > 9(0.072)=0.648 1/9 < 1.543
5 (0.2579, 0.2697] 10 > 10(0.066)=0.660 1/10 < 1.515
6 (0.2500, 0.2579] 11 > 11(0.062)=0.682 1/11 < 1.466
7 (0.2139, 0.2500] 16 > 16(0.045)=0.720 1/16 < 1.388
8 (0.2073, 0.2139] 17 > 17(0.042)=0.714 1/17 < 1.400
9 (0.2047, 0.2073] 18 > 18(0.041)=0.738 1/18 < 1.355
10 (0.2000, 0.2047] 19 > 19(0.040)=0.760 1/19 < 1.315
11 (0.1779, 0.2000] 25 > 25(0.031)=0.775 1/20 < 1.290
12 (0.1752, 0.1779] 26 > 26(0.030)=0.780 1/26 < 1.282

13 (0, 0.1752] > 0.702 1.425x2 ≈ 1.425

Table 2: A summary of item classification, weights, and densities, as used in the definition and analysis of
Square-Rotate.

2.4 Analysis

In this section, we prove a competitive ratio of at most
2.306 for Square-Rotate. We use a weighting function
argument. For each item of size x, we define a weight
w(x) ≥ x and prove that: (1) the total weight of square
items in each bin of the algorithm, except potentially a
constant number of them, is at least 1, and (2) the total
weight of items in each bin of an optimal packing is at
most 2.306. If w(σ) denotes the total weight of items in
an input sequence σ, then (1) implies that the number
of bins opened by the algorithm is at most w(σ)+ c, for
some constant value of c, and (2) implies that the num-
ber of bins in an optimal packing is at least w(σ)/2.306.
Therefore, the (asymptotic) competitive ratio of the al-
gorithm would be at most 2.306.

Weight assignment. Recall that all bins opened for
squares of class i (1 ≤ i ≤ 12), except possibly the last
active bin, include Si squares. We define the weight of
items of class i to be 1/Si. This way, the total weight
of items in bins opened for all squares of classes 1 to
12, except possibly 12 of them (the last bin from each
class), is exactly 1. Therefore, (1) holds for bins opened
for regular items.

We define the weight of a tiny item of size x as
x2/0.701(≈ 1.42x2). All tiny items are of size at most
0.1752. Therefore, by Lemma 1, the occupied area of all
bins opened for tiny items (except possibly one of them)
will be at least 0.701. This implies their total weight is
at least 0.701/0.701 = 1.

Table 2 gives a summary of the weights of items in
different classes. From the above argument, we conclude
the following lemma.

Lemma 2 The total weight of squares in each bin
opened by Square-Rotate, except possibly 13 of them,
is at least 1.

Next, we provide an upper bound for the total weight
of items in a bin of the optimal offline algorithm (Opt).
Define the density of an item of size x as the ratio be-
tween its weight and area, i.e., w(x)/x2. Given the lower
bound for the size of each square belonging to class
i (1 ≤ i ≤ 12), we can calculate an upper bound for
the density of items in each class. For tiny items, the
density is simply 1.425x2/x2 = 1.425. Density upper
bounds for all classes are reported in Table 2. Defining
densities comes in handy in a case analysis used to prove
the following lemma.

Lemma 3 (Appendix A) The total weight of items
in a bin of Opt is less than 2.306.

Proof. (sketch) We consider a bin B of Opt and use
case analysis to find an upper bound for the total weight
of items in B. The case analysis considers the number
of items of classes 1, 2, and 3 in B. In each case, the
upper bounds for densities yield an upper bound for
the total weight. In the simplest case, when there is
no item of class 1 in B, the density of all items will
be at most 1.838, and so will be the total weight of all
items in B. The presence of an item of class 1 restricts
the number and class of other items in B, as captured
by 14 sub-cases in the proof of the lemma. Neverthe-
less, the maximum weight in all cases is at most 2.306,
which happens when B contains one item of class 1,
three items of class 2, and one item of class 3. □

Provided with the above two lemmas, we can derive
the main result of this section.

Theorem 1 There is an algorithm Square-Rotate
for the online square packing problem with rotation
which achieves a competitive ratio of at most 2.306.

Proof. For an input σ, let SR(σ) and Opt(σ) denotes
the cost of Square-Rotate andOpt, respectively. Let



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

(a) Class 1: x ∈
(0.7072, 1.0000]

t = 1.000

(b) Class 2: x ∈
(0.5593, 0.7072]

t = 0.7072

(c) Class 3: x ∈
(0.5000, 0.5593]

t = 0.5593

(d) Class 4: x ∈
(0.3828, 0.5000]

t = 0.5000

(e) Class 5: x ∈
(0.3056, 0.3828]

t = 0.3828

(f) Class 6: x ∈
(0.2843, 0.3056]

t = 0.3056

Figure 3: Placement of regular tan items of class i ∈ [1, 6] in their respective bin. It is possible to pack i tans of class
i into a square bin [11].

w(σ) denote the total weight of items of σ. Lemma 2
implies that SR(σ) ≤ w(σ) + 13. Meanwhile, Lemma 3
implies that Opt(σ) ≥ w(σ)/2.306. From these inequal-
ities, we conclude SR(σ) ≤ 2.306 Opt(σ) + c, where c
is a constant independent of the length of σ. □

It is possible to analyze Square-Rotate when all
items are of size at most 1/2. In particular, we can
establish the following result using the same weighting
argument as before and a case analysis slightly different
from that of Lemma 3, to get an upper bound for the
total weight of items in a bin of optimal packing.

Theorem 2 [Appendix B] When all items are of size
at most 1/2, Square-Rotate achieves a competitive
ratio of at most 1.732.

3 Online Tan Packing

This section studies a problem similar to the online
square packing problem, called the online tan pack-
ing problem, where the sequence of items is formed by
isosceles right triangles (half-squares), which we refer to
as “tans”.

Definition 2 The input to the online tan packing with
rotation problem is a sequence σ = ⟨a1, a2, . . . , an⟩,
where at ∈ (0, 1] denote the leg sizes of right isosceles
triangles (half-square triangles or tans), that need to be
packed into a minimum number of unit bins. The deci-
sions of the algorithm at any time t are irrevocable and
are made without knowing the values of at′ for t′ > t.

3.1 Half-Square-Rotate Algorithm

We will introduce an online algorithm, called
Half-Square-Rotate, that classifies tans by their leg
sizes and packs tans of each class separately from other
classes. There are seven classes, as presented in Ta-
ble 3. We refer to items that belong to classes i ∈ [1, 6]
as regular items and those in class 7 as tiny items. Tiny
items have sizes in the range (0, 0.2843]. For each class
i ∈ [1, 6], the range of items in class i is specified as

(yi, yi−1] (for convenience, we define y0 = 1). The val-
ues of yi are defined so that a certain number Ti of tans
of class i can fit in the same bin.

The specific range of item sizes for each class i ∈ [1, 6]
and values of Ti is derived from the best-known or opti-
mal results on the congruent tan packing problem [11],
which asks for the minimum size s(j) of a square that
can contain j tans of unit leg size. A scaling argument,
where the container size is fixed to be 1, gives t(j) values
when the goal is to pack j identical tans of maximum
leg size t(j) into a unit square. Table 4 provides the
scaled best-known/optimal t(j) values for 1 ≤ j ≤ 20.
These scaled numbers give the specific ranges that we
used for classifying items as follows: Tans of class 1 have
sizes in the range (0.7072, 1], and we have y1 = 0.7072.
Note that exactly T1 = 1 item of class 1 can fit in the
same bin (for tans of size ≤ 0.7072, it is possible to
pack at least two tans in the bin). For i ∈ [2, 6], Ti is
the number of items of size yi−1 that fit in the same
bin. For example, for i = 2, we have T2 = 4 because
y1 = 0.7072, and up to 4 items of size 0.7072 fit in the
same bin. Moreover, yi is defined as the largest value so
that Ti + 1 items of size yi cannot fit in the same bin.
For example, we have y2 = 0.5593 because, according to
Table 4, T2 + 1 = 5 tans of size 0.5593 do not fit in the
same bin (with respect to the best known results). The
respective range of items for each class, as well as the
values of Ti, are presented in Table 3. Figure 3 shows
how Ti items of the largest size in class i can fit into a
square bin.

3.2 Packing Regular Items

For each class i (1 ≤ i ≤ 6), the algorithm has at most
one active bin of type i. When a bin of type i is opened,
it is declared as the active bin of the class, and Ti tan
“spots”, each of which has a size equal to the largest tan
of class i, are reserved in the bin. Upon the arrival of an
item of class i, it is placed in one of the Ti spots of the
active bin. If all these spots are occupied by previous
items, a new bin of type i is opened. This ensures that
all bins of type i, except potentially the current active
bin, include Si items.



34th Canadian Conference on Computational Geometry, 2022

Class Side length y Ti Occupied Area Weight Density

1 (0.7072, 1.0000] 2 > 2(0.250)=0.500 1/2 < 2.000
2 (0.5593, 0.7072] 4 > 4(0.156)=0.626 1/4 < 1.599
3 (0.5000, 0.5593] 5 > 5(0.125)=0.625 1/5 < 1.600
4 (0.3828, 0.5000] 8 > 8(0.073)=0.586 1/8 < 1.706
5 (0.3056, 0.3828] 12 > 12(0.047)=0.560 1/12 < 1.785
6 (0.2843, 0.3056] 20 > 20(0.040)=0.808 1/20 < 1.237

Tiny (0, 0.2843] > 0.557 1.795(y2/2) 1.795

Table 3: A summary of item classification, weights and densities, as used in the definition and analysis of
Half-Square-Rotate.

3.3 Packing Tiny Item

To pack tiny items, Half-Square-Rotate uses the
same approach as Square-Rotate. Namely, the algo-
rithm maintains partitioning any tiny bin into sub-bins
formed by tans of various sizes. The only difference,
compared to the algorithm of Epstein and van Stee [9],
is that the square bin is divided initially into two tans
(of side length 1) instead of four sub-bins. Subsequently,
instead of partitioning larger square sub-bins into four
sub-squares, we partition large tan sub-bins into two
smaller tan sub-bins. One crucial observation is that it
is possible to partition a tan into two sub-tans, which
allows using the same approach as in [9]. Using a sim-
ilar proof to the one in [9], we can show this adapted
algorithm almost entirely packs each bin.

Lemma 4 [9] Consider the tan packing problem in
which all items are of size at most 1/M for some in-
teger M ≥ 2. There is an online algorithm that creates
a packing in which all bins, except possibly one, have an
occupied area of size at least (M2 − 1)/(M + 1)2.

3.4 Analysis

We use a weighting argument to prove the competitive
ratio of Square-Rotate is at most 1.897. For each
tan of size x, we define a weight w(x) as follows. Recall

n t opt./b.k. n t opt./b.k.

1 = 1.0 opt 11 ≈ 0.4143 b.k.
2 = 1.0 opt 12 ≈ 0.3828 b.k.
3 ≈ 0.7072 opt. 13 ≈ 0.3720 b.k.
4 ≈ 0.7072 opt. 14 ≈ 0.3614 b.k.
5 ≈ 0.5593 b.k. 15 ≈ 0.3536 b.k.
6 ≈ 0.5163 b.k. 16 ≈ 0.3536 opt.
7 ≈ 0.5003 b.k. 17 ≈ 0.3367 b.k.
8 = 0.5 opt. 18 ≈ 0.3333 opt.
9 ≈ 0.4531 b.k. 19 ≈ 0.3124 b.k.
10 ≈ 0.4179 b.k. 20 ≈ 0.3056 b.k.

Table 4: Optimal (opt.) or best-known (b.k.) t(j) val-
ues for 1 ≤ j ≤ 20 when the goal is to pack j identical
tans of the largest leg size t(j) into a unit square. Val-
ues of t(j) are the scaled values of the known results on
congruent tan packing [11].

that all bins opened for tans of class i (1 ≤ i ≤ 6),
except possibly the last active bin of each class, include
Ti tans. We define the weight of items of class i to be
1/Ti. For a tiny tan of leg size x, we define its weight as
1.795(x2/2) where x2/2 is the area of the tan. Table 3
gives a summary of the weights of the items in different
classes. Our definition of weights ensures that all bins
opened for regular items, except potentially the last six
active bins, have a total weight of 1 since they include
i items of weight i. Similarly, our definition of weight
for tiny items, paired with Lemma 4, ensures that all
tiny bins, except potentially the active one, will have a
weight of 1. We can conclude the following lemma.

Lemma 5 [Appendix C] The total weight of tans in
each bin opened by Half-Square-Rotate, except pos-
sibly 7 of them, is at least 1.

Using a case analysis, which is similar to that of
Lemma 3 and is based on investigating the density of
items in a bin of Opt, we can find an upper bound for
the total weight of items in any bin of the optimal offline
algorithm Opt.

Lemma 6 (Appendix D) The total weight of items
in a bin of Opt is less than 1.897.

Theorem 3 The Half-Square-Rotate algorithm
for the online tan packing with rotation achieves a com-
petitive ratio of at most 1.897.

Proof. For an input σ, let HR(σ) and Opt(σ) de-
note the cost of Half-Square-Rotate and Opt, re-
spectively. Let w(σ) denote the total weight of items
of σ. Lemma 5 implies that HR(σ) ≤ w(σ) +
7. Meanwhile, Lemma 6 implies that Opt(σ) ≥
w(σ)/1.897. From these inequalities, we conclude
HR(σ) ≤ 1.897 Opt(σ)+c, for some constant c ∈ O(1)
which proves an upper bound 2.306 for the asymptotic
competitive ratio of Square-Rotate. □

Acknowledgements

We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC)
[funding reference number DGECR-2018-00059].



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

References

[1] S. Angelopoulos, S. Kamali, and K. Shadkami. Online
bin packing with predictions. In Proceedings of the 31st
Internation Joint Conference on Artificial Intelligence
(IJCAI), 2022.

[2] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin.
A new and improved algorithm for online bin packing.
In Proceedings of the 26th Annual European Symposium
on Algorithms (ESA), volume 112, pages 5:1–5:14, 2018.

[3] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin.
A new lower bound for classic online bin packing. Al-
gorithmica, 83(7):2047–2062, 2021.

[4] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko.
Bin packing in multiple dimensions: Inapproximability
results and approximation schemes. Math. Oper. Res.,
31(1):31–49, 2006.

[5] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali.
Approximation and online algorithms for multidimen-
sional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

[6] E. G. Coffman, M. R. Garey, and D. S. Johnson. Ap-
proximation algorithms for bin packing: A survey. In
Approximation algorithms for NP-hard Problems. 1997.

[7] E. G. Coffman Jr., J. Csirik, G. Galambos, S. Martello,
and D. Vigo. Bin packing approximation algorithms:
survey and classification. In Handbook of Combinatorial
Optimization, pages 455–531. 2013.

[8] L. Epstein. Two-dimensional online bin packing with
rotation. Theor. Comput. Sci., 411(31-33):2899–2911,
2010.

[9] L. Epstein and R. van Stee. Optimal online bounded
space multidimensional packing. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 214–223, 2004.

[10] L. Epstein and R. van Stee. Online square and cube
packing. Acta Inf., 41(9):595–606, 2005.

[11] E. Friedman. Packing unit squares in squares: A survey
and new results. The Electronic Journal of Combina-
torics, pages 1–24, 2000.

[12] G. Galambos and G. J. Woeginger. On-line bin pack-
ing - A restricted survey. Math. Methods Oper. Res.,
42(1):25–45, 1995.

[13] M. R. Garey and D. S. Johnson. Approximation al-
gorithms for bin packing problems - a survey. In
G. Ausiello and M. Lucertini, editors, Analysis and
Design of Algorithms in Combinatorial Optimization,
pages 147–172. Springer, 1981.

[14] X. Han, D. Ye, and Y. Zhou. A note on online hyper-
cube packing. Central European Journal of Operations
Research, 18(2):221–239, 2010.

[15] S. Heydrich and R. van Stee. Beating the harmonic
lower bound for online bin packing. In Proceedings of
the 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 41:1–41:14,
2016.

[16] R. Hoberg and T. Rothvoss. A logarithmic additive
integrality gap for bin packing. In Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 2616–2625, 2017.

[17] S. Kamali and A. López-Ortiz. Almost online square
packing. In Proceedings of the 26th Canadian Confer-
ence on Computational Geometry (CCCG), 2014.

[18] S. Kamali and A. López-Ortiz. All-around near-optimal
solutions for the online bin packing problem. In Pro-
ceedings of the 26th International Symposium on Algo-
rithms and Computation (ISAAC), volume 9472, pages
727–739, 2015.

[19] S. Kamali, A. López-Ortiz, and Z. Rahmati. Online
packing of equilateral triangles. In Proceedings of the
27th Canadian Conference on Computational Geometry
(CCCG), 2015.

[20] S. Kamali and P. Nikbakht. Cutting stock with rota-
tion: Packing square items into square bins. In Proceed-
ings of the 14th International Conference on Combina-
torial Optimization and Applications (COCOA), pages
530–544, 2020.

[21] J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young,
and F. Y. L. Chin. Packing squares into a square. Jour-
nal of Parallel and Distributed Computing, 10(3):271–
275, 1990.

[22] S. S. Seiden and R. van Stee. New bounds for multidi-
mensional packing. Algorithmica, 36(3):261–293, 2003.



34th Canadian Conference on Computational Geometry, 2022

C1 C2 C3
Sum of
Weights

(W )

Sum of
Areas
(A)

Remaining
Area

(Ar = 1−A)

Weight of Items in
the Remaining Area

(Wr = Ar × 1.543)

Total Weight of
Items in the Bin
(Wmax = W +Wr)

Number
of items
of each
class in
an OPT
bin

1 0 0 1.00 > 0.250 < 0.750 < 1.157 < 2.157
1 0 1 1.20 > 0.361 < 0.639 < 0.986 < 2.186
1 0 2 1.40 > 0.472 < 0.528 < 0.815 < 2.215
1 0 3 1.60 > 0.583 < 0.417 < 0.644 < 2.244
1 0 4 1.80 > 0.694 < 0.306 < 0.472 < 2.272
1 1 0 1.25 > 0.386 < 0.614 < 0.948 < 2.198
1 1 1 1.45 > 0.497 < 0.503 < 0.776 < 2.226
1 1 2 1.65 > 0.608 < 0.392 < 0.605 < 2.255
1 1 3 1.85 > 0.719 < 0.281 < 0.434 < 2.284
1 2 0 1.50 > 0.522 < 0.478 < 0.738 < 2.238
1 2 1 1.70 > 0.633 < 0.367 < 0.566 < 2.266
1 2 2 1.90 > 0.744 < 0.256 < 0.395 < 2.295
1 3 0 1.75 > 0.658 < 0.342 < 0.528 < 2.278
1 3 1 1.95 > 0.769 < 0.231 < 0.356 < 2.306

Table 5: The fourteen possible cases for a combination of items of class 2 (C2) and 3 (C3) together with an item x
of class 1 (C1) in a bin B. Here, sum of weights (W ) and sum of areas (A) indicate, respectively, the total weight
and area of items of the first three classes in B. Remaining area is the area left in the bin that is used for packing
items of class 4 or higher. Weight of items in the remaining area is an upper bound for the total weight of items of
class 4 or higher in B (these items have a density of no more than 1.543). Finally, total weight of items in the bin
indicates the sum of weights of all items (from all classes) in B.

Appendix

A Proof of Lemma 3

Proof. We use the following case analysis:

Case 1: Assume there is no item of class 1 in B. Since the
density of items of other classes are less than 1.838, even if
B is fully packed with items of the largest density, the total
weight of items cannot be more than 1.838, which is less
than 2.306.

Case 2: Assume there is one item x of class 1 (note that no
two items of class 1 fit in the bin). Without loss of generality,
we assume the size of x is 1/2+ ϵ, where ϵ is a small positive
value greater than zero. Clearly, a larger size for x does not
increase the total weight of other items in B because it would
leave less space to occupy more items in the bin (while the
weight of x stays 1). Next, we consider all possible cases in
which we have some items of class 2 and 3 together with x
in B. As presented in Table 5, there will be 14 sub-cases to
analyze. To see how we reach these 14 sub-cases, first note
that it is not possible to accommodate four or more items of
class 2 in addition to x in B (i.e., a total number of 5 or more
items from these classes 1 and 2). This is because no five
items with size larger than 0.3694 can fit in B [11]. A similar
argument shows that we cannot have six or more items from
classes 1, 2, and 3 together in a bin; otherwise, we could
accommodate six identical squares of size strictly larger than
0.3333, which is a contradiction to the fact that no six items
of size larger than 0.3333 can fit in the same bin [11]. In
summary, the 14 sub-cases summarized in Table 5 cover all
possibilities for items of the first three classes in Case 2.

According to Table 2, the density of items belonging to
class i (4 ≤ i ≤ 12) as well as tiny items is at most 1.543

(which is the density of class-4 items). Using a similar ar-
gument made for Case 1, we suppose that, after placing a
certain number of items of class 2 and 3 beside x in B, in
each sub-case, we can fill the remaining space of B with
the items of the maximum density 1.543. This allows us to
calculate an upper bound for the maximum total weight of
items in B for each of the sub-cases. The resulting bounds
for each sub-case can be found in the last column of Table 5,
where the maximum upper bound among all sub-cases is
2.306, which happens when we have one item of class 1 in B
together with three items of class 2 and one item of class 3.

As a result, in both Case 1 and Case 2, the total weight
of items in B cannot be more than 2.306. □

B Proof of Theorem 2

Proof. We employ the same approach and weighting func-
tion as the one we used to analyze the upper bound of
Square-Rotate for the general setting, except that we
exclude items of class 1, that is, items of size more than
1/2. By Lemma 2, the total weight of items in each bin of
Square-Rotate, except for a possibly a constant number
of them, is at least 1. Therefore, to prove the theorem, it
suffices to show the total weight of items in any bin B of an
optimal packing is at most 1.732. To study the maximum
weight of items in B, we consider all possible combinations
of items from classes 2 and 3 in B. For that, we consider the
following two limitations: (i) we cannot have more than four
items of class 2 in B; otherwise, we could accommodate five
squares of size more than 0.3694, which is not possible [11].
(ii) we cannot have more than six items of class 2 or 3 in
B. Otherwise, one could place six squares of size more than
0.3333, which is known to be impossible [11]. Altogether,
we will have 19 cases to consider as presented in Table 6.



CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

C2 C3 Total Weight of
Items in the Bin

C2 C3 Total Weight of
Items in the Bin

Number of
items of each
class c ∈ {2, 3}
in B.

0 0 < 1.543 1 4 < 1.698
0 1 < 1.572 2 0 < 1.623
0 2 < 1.601 2 1 < 1.652
0 3 < 1.629 2 2 < 1.681
0 4 < 1.658 3 0 < 1.664
0 5 < 1.687 3 1 < 1.692
1 0 < 1.583 3 2 < 1.721
1 1 < 1.612 4 0 < 1.704
1 2 < 1.641 4 1 < 1.732
1 3 < 1.669

Table 6: Maximum total weight of items of size ∈ (0, 1/2) in a bin B of an optimal packing in all nineteen possible
cases in which there is no item of class 1 but a combination of items of class 2 (C2) and 3 (C3) in B.

We have used the same method as in Lemma 3 to calculate
the upper bound for the total weight of items in each case.
Table 6 summarizes the final results for all cases. The max-
imum weight, 1.732, happens when we have four items of
class 2 together with one item of class 3 packed in B. □

C Proof of Lemma 5

Proof. In every bin of class i (1 ≤ i ≤ 6), except possibly
the last bin, there are Ti items, each having a weight of
1/Ti. As a result, the total weight of the items in each
bin of such classes, except possibly 6 of them, is exactly
Ti × 1/Ti = 1. For bins of tiny items, we know, by Lemma 4
and considering 1/M = 0.2843, that the occupied area of
all bins, except possibly the last one, will be at least 0.557.
Therefore, the total weight of items in such a bin is at least
W = 1.795× 0.557 = 1. □

D Proof of Lemma 6

Proof. We first define the density of a tan item of leg
size x as the ratio between its weight and its area, i.e.,
w(x)/(x2/2). Given the lower bound for the leg size of items
in each class i (1 ≤ i ≤ 6), and, hence, their area, we can
calculate an upper bound for the density of each item in
the class. For tiny items, the density is simply equal to
1.795(x2/2)/(x2/2) = 1.795. The densities of items from
different classes are reported in Table 3. In what follows, we
use a case analysis approach to prove that the total weight
of items in a bin B of an optimal packing is at most 1.897.
There are three cases to consider: either 0, 1, or 2 tans of
class 1 exist in the bin. Note that it is not possible to ac-
commodate 3 or more items of class 1 in a bin because their
total area would exceed 1.

Case 1: No class-1 item in B: Since the density of items
of class 2 or larger is at most 1.795, even if all area of B is
filled with items of the largest density, the total weight of
items cannot exceed 1× 1.795 which is less than 1.897.

Case 2: Exactly one class-1 item in B: If there is
exactly one item of class 1 (with weight 1/2 and the area
of at least (0.7072 × 0.7072)/2 = 0.25) in B, the remaining
area in the bin will be at most 0.75. Items of classes other
than class 1 have a density of at most 1.795. Even if we fill

the remaining area with such items of the highest density,
the total weight of items in B will not exceed 1.346. As a
result, the total weight of items in B cannot be more than
1/2 + 1.346 = 1.846, which is less than 1.897.

Case 3: Exactly two class-1 items in B: If there ex-
ists exactly two items of class 1 with weight 1/2 (and the
total weight of 1) and total area of at least 2 × (0.7072 ×
0.7072)/2 = 0.50, the remaining area in B will be at most
0.50. If this remaining area is filled by items of the highest
density, which are items of the last class with a density of at
most 1.795, the total weight of items in B will not be more
than 1 + 0.50× 1.795 = 1.897.

In conclusion, the total weight of items in a bin B of an
optimal packing cannot be more than 1.897 in all cases. □


	Introduction
	Related Work
	Contribution

	Online Square Packing
	Item Classification
	Packing Regular Items
	Packing Tiny Items
	Analysis

	Online Tan Packing
	Half-Square-Rotate Algorithm
	Packing Regular Items
	Packing Tiny Item
	Analysis
	Proof of Lemma 3
	Proof of Theorem 2
	Proof of Lemma 5
	Proof of Lemma 6


