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Optimally Confining Lattice Polymers

Robert D. Barish* Tetsuo Shibuya�

Abstract

We introduce the Lattice Polymer Confinement Prob-
lem (LPCP), where provided a graph G correspond-
ing to a solid or hole-containing finite lattice, and pro-
vided a finite set of vertex-wise lengths L ⊂ N of lat-
tice polymers modeled as Self-Avoiding Walks (SAWs),
the objective is to delete the fewest possible number
of vertices in G to satisfy a bound S(G,L) ≤ Ω on
a sum over the configuration entropies of each poly-
mer. In this context, we use Boltzmann’s expression
S(G,L) = kB · ln (W + 1) for the system configuration
entropy, where kB ≈ 1.380649 · 10−23 J ·K−1 is Boltz-
mann’s constant, and W corresponds to a sum over the
number of SAWs modeling lattice polymers in a speci-
fied host graph. We also propose a novel Self-Avoiding
Walk (SAW) centrality measure, CSAW (L, vi), for a ver-
tex vi in a lattice or graph as a variation on the standard
notion of betweenness centrality, which for a specified
finite set L ⊂ N, corresponds to the fraction of length
li ∈ L SAWs that cover vi.

Letting G be an input lattice or graph for LPCP
with vertex set VG and edge set EG, we show that
LPCP is NP -hard as well as APX-hard ∀Ω ≥ 0 and
for all finite L ⊂ N≥2. On the other hand, letting
tr (G) be the treewidth of G, letting ζtw = f (tr (G)) ·
O (|VG|+ |EG|) for some computable function f , and
letting Yinit be the initial system configuration entropy,
we prove the existence of an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm for

LPCP. We moreover establish that an O (Ψ) determin-
istic algorithm for SAW centrality with multiplicative
error 1 ± ε, which we remark can be derived from ex-
isting PTAS algorithms for counting bounded-length
SAWs in graphs, correspondingly implies the existence

of an O
(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-

approximation algorithm for LPCP.

Finally, we briefly analyze variations on LPCP, in-
cluding a variant where we delete edges in lieu of ver-
tices, and variant with “rigid” lattice polymers (e.g.,
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lattice proteins) where every embedding must satisfy a
set of consecutive dihedral angles for adjacent bonds.

1 Introduction

We introduce and analyze what we denote the Lat-
tice Polymer Confinement Problem (LPCP), which con-
cerns minimally modifying a solid or hole-containing
finite lattice G such that, provided a finite set of
vertex-wise lengths L ⊂ N of lattice polymers mod-
eled as Self-Avoiding Walks (SAWs), the system con-
figuration entropy S(G,L) = kB · ln (W + 1) falls be-
low a specified threshold Ω ≥ 0. In this context,
kB ≈ 1.380649 · 10−23 J · K−1 is Boltzmann’s con-
stant,W corresponds to a sum over the number of SAWs
(modeling lattice polymers) of length li ∈ L in a spec-
ified host graph, and Ω should everywhere be assumed
to have units J ·K−1. Briefly, we can observe that the
system configuration entropy is equivalently expressed

as S(G,L) = −kB ·
∑W
i=1

((
1
W+1

)
· ln
(

1
W+1

))
, allowing

us to obtain the expression for Shannon entropy by sub-
stituting kB with the reciprocal of the logarithm of the
number of observed events for a discrete random process

and
(

1
W+1

)
with the probability of a specific event.

We remark that such lattice polymer models have ex-
tensive precedence in the field of protein structure pre-
diction and engineering [14, 22]. For illustrative exam-
ples, we refer the reader to Fig. 1 and Fig. 2, where we
show LatFit [23, 24] generated (semi-rigid) embeddings
of the peptide backbones for the NMR solution struc-
ture of an ShK potassium channel inhibitor toxin from
sea anemone (PDB ID: 1ROO) on a Z2 integer lattice,
and the crystal structure of an antifreeze protein from
notched-fin eelpout (PDB ID: 5XQN) on a 210 “knight’s
tour” lattice, respectively.

Our inspiration for LPCP is a visually stunning ex-
perimental demonstration by Turner et. al. [26] of how
entropy gradients can invoke forces on polymers. To
briefly describe their experiment, Turner et. al. [26] be-
gan by manufacturing a microfluidic cell with two adja-
cent quasi-two-dimensional volumes, which we will re-
fer to as Jopen and Jpillars, where Jopen is an otherwise
open volume and Jpillars is populated with ≈ 35 nm
diameter pillars with a ≈ 160 nm center-to-center spac-
ing. The authors then used an electric field to drag
double-stranded T2-phage genomic DNA (having a con-
tour length of ≈ 51 µm) from Jopen to Jpillars, signifi-
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cantly restricting the polymer’s configuration freedom.
Once the electric field was lifted and one end of a given
polymer diffused into Jopen, a CCD camera was used to
observe the remainder of the molecule rapidly “recoil-
ing” out of Jpillars, acting against a hydrodynamic drag
with a force of ≈ 5.7 fN . The authors then determined
that this force was driven almost entirely by a config-
uration entropy gradient, noted that it was within an
order of magnitude of the ≈ 40 fN force expected by a
≈ ∆1 kB change in configuration entropy per polymer
Kuhn length (i.e., length units of a semi-rigid polymer
that can be approximated as segments of a freely-jointed
chain [16]) moving from Jpillars to Jopen.

We now ask the question: if we treat the configu-
ration entropy S(G,L) for one or more lattice polymers
embedded in a solid lattice as roughly equivalent to the
embedding of real polymers in an open volume akin to
Jopen, how can we minimally modify the lattice (e.g.,
by deleting vertices) to create a volume akin to Jpillars?
Here, the aforementioned LPCP problem, which we for-
mally define below, represents our attempt to formalize
and generalize this problem.

Definition 1 Lattice Polymer Confinement Problem,
LPCP (G,L,Ω)

Input: A graph G with vertex set VG, corresponding
to a solid or hole-containing finite lattice, a finite
set of vertex-wise lengths L ⊂ N of lattice polymers
modeled as Self-Avoiding Walks (SAWs), and an
upperbound Ω for the configuration entropy S(G,L)

of the system. Here, S(G,L) = kB · ln (W + 1), where
kB ≈ 1.380649 · 10−23J ·K−1 is Boltzmann’s constant,
and W corresponds to a sum over the number of
embeddings in G of each lattice polymer corresponding
to a SAW of length li ∈ L.
Objective: Return a minimum cardinality set of
vertices Q ⊆ VG whose deletion converts G into a graph
G′ where we have that S(G′,L) ≤ Ω.

For illustrative examples of LPCP (G,L,Ω) and what
(approximate) witnesses look like, we refer the reader
to Fig. 3, where we show instances of input graphs G
corresponding to: (a) a 6 × 6 induced subgraph of a
Z2 integer lattice; (b) a 3 × 3 × 3 induced subgraph
of a Z3 integer lattice; (c) an induced subgraph of a
triangular lattice; and (d) an induced subgraph of a
honeycomb lattice. In each of the examples from Fig.
3(a–d), we also show a set of (white) vertices that would
be selected in the specified order (first 1, then 2, etc.) for
deletion by a greedy algorithm attempting to minimize
S(G,L). In the Fig. 3(e) table, we show the approximate
configuration entropy for the examples in Fig. 3(a–d)
(recall that kB ≈ 1.380649 ·10−23J ·K−1), as well as the
configuration entropies following each vertex deletion.

As a subroutine of our greedy algorithms for the
LPCP problem, we also introduce a novel Self-Avoiding

Walk (SAW) vertex centrality measure as a variation
on betweenness centrality. This measure assigns a
score to the vertices of a simple undirected graph
based on the fraction of all possible SAW embeddings
of specified lengths li ∈ L they are covered by, and
accordingly allows one to rank vertices in a graph
according to the effect of their deletion on the system
configuration entropy. More specifically, letting G
be a simple graph with vertex set VG, and letting
f(SP,all) (G, va, vb) and f(SP,vi) (G, va, vb) be functions
which return the number of shortest paths from a
vertex va ∈ VG to a vertex vb ∈ VG and the number
of such paths traversing the vertex vi /∈ {va, vb},
respectively, we can recall that the betweenness cen-
trality [17, 18, 27] for a vertex vi ∈ VG is given
by CBetweenness (G, vi) =

∑
(a,b∈[1,|VG|]∧a<b∧a 6=i∧b 6=i)

(
f(SP,vi)

(G,va,vb)

f(SP,all)(G,va,vb)

)
, f(SP,all) (G, va, vb) 6= 0

0, f(SP,all) (G, va, vb) = 0

.

Now, letting G and VG be defined as before, and letting
f(SAW,all) (G,L) be a function which returns the num-
ber of all simple paths (equiv. SAWs) of all possible
vertex-wise lengths li ∈ L in G, we can define the SAW
centrality for a vertex vi ∈ VG as CSAW (G,L, vi) ={(

f(SAW,all)(G−vi,L)

f(SAW,all)(G,L)

)
, for f(SAW,all) (G,L) 6= 0

0, for f(SAW,all) (G,L) = 0

}
.

To begin our analysis of LPCP, we first establish hard-
ness results. In particular, we show that LPCP is NP -
hard even if G is a subgraph of a Z2 integer lattice and
we have either the constraint that |L| = 1 or the con-
straint that L = {1, 2, . . . , |VG|} (Proposition 1). If G is
allowed to be an arbitrary simple undirected graph, we
moreover show that LPCP is NP -hard as well as APX-
hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2 (Proposition 2).

We next detail approximation algorithms for LPCP.
In particular, letting tr (G) be the treewidth of G, let-
ting ζtw = f (tr (G)) · O (|VG|+ |EG|) for some com-
putable function f , and letting Yinit be the initial
system configuration entropy, we prove the existence
of an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-

approximation algorithm (Theorem 3). We additionally
show that an O (Ψ) deterministic algorithm for SAW
centrality with multiplicative error 1 ± ε correspond-
ingly implies the existence of an O

(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-approximation algorithm (The-

orem 5).

Finally, we show how the aforementioned approxima-
tion algorithms extend to variations on LPCP where we
delete edges in lieu of vertices (Corollary 8), as well as
a variant where we consider the configuration entropies
of “rigid” lattice polymers (e.g., lattice proteins) akin
to those shown in Fig. 1 and Fig. 2 (Remark 1).
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Figure 1: LatFit [23, 24] generated Z2 integer lattice embedding of the backbone for the NMR solution structure of
an ShK potassium channel inhibitor toxin from sea anemone (PDB ID: 1ROO); the lattice embedding of the protein
backbone is illustrated with (blue) vertices and edges, and the original structure of the protein backbone is illustrated
with (white) vertices and edges.

Figure 2: LatFit [23, 24] generated 210 “knight’s tour” lattice embedding of the backbone for the crystal structure
(obtained via X-ray diffraction techniques) of an antifreeze protein from notched-fin eelpout (PDB ID: 5XQN); the
lattice embedding of the protein backbone is illustrated with (blue) vertices and edges, and the original structure of
the protein backbone is illustrated with (white) vertices and edges.

2 Preliminaries

2.1 Graph theoretic terminology

We will generally follow definitions that are more-or-
less standard (see, e.g., Diestel [11]). However, for
some brief clarifications, when we use the term graph
we are everywhere referring to simple undirected and
unweighted graphs. We call a graph cubic if and only
if all of its vertex degrees are uniformly equal to 3, and

subcubic if and only if it has maximum vertex degree
3. Concerning paths and cycles in graphs, a path or
cycle is called simple, or a Self-Avoiding Walk (SAW)
in the case of paths, if it does not revisit either edges
or vertices, called Hamiltonian if it is simple and covers
all vertices, and called induced if it is also an induced
subgraph. Here, the Hamiltonian cycle problem is the
problem of deciding the existence of a Hamiltonian cycle
in a graph, and the st-path problem and st-Hamiltonian
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Out[ ]=

(a) (b)

(c) (d)

(e)
Deleted Vertices: None {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6}

(a) 6×6 Integer Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 19.8946 18.2877 16.5245 14.7857 13.0960 11.2828 9.36888

(b) 3×3×3 Integer Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 20.1267 18.0250 16.3276 14.5983 12.8702 11.1030 9.48562

(c) Triangular Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 16.3800 14.2945 12.1922 10.0761 8.51759 6.90174 4.95583

(d) Honeycomb Lattice, (G,ℒ ) (J·K
-1) · (kB)

-1 : 16.5431 15.0823 13.5212 11.9914 10.5050 9.06439 7.23778
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Figure 3: Illustrative examples of LPCP (G,L,Ω) problem instances, where letting L be the set of all possible SAW
lengths, for each graph G in (a–d) the order of the first 6 vertices (colored white) selected by a naive greedy algorithm
minimizing the system configuration entropy is shown (with the labels “1” for the first selected vertex, “2” for the
second selected vertex, etc.). The approximate system configuration entropies before and after each successive vertex
deletion event, divided by kB , are given in the table shown in (e). Here, (a) corresponds to a 6×6 induced subgraph
of a Z2 integer lattice (36 vertices and 60 edges), (b) corresponds to a 3 × 3 × 3 induced subgraph of a Z3 integer
lattice (27 vertices and 54 edges), (c) corresponds to an induced subgraph of a triangular lattice (21 vertices and 45
edges), and (d) corresponds to an induced subgraph of a honeycomb lattice (48 vertices and 63 edges).

path problem is the problem of deciding the existence
of a simple path (equiv., SAW) and Hamiltonian path,
respectively, between a pair of vertices vs and vt.

2.2 Fixed-parameter tractability and intractability

A problem can be denoted Fixed-Parameter Tractable
(FPT) if, letting x be a string encoding a given prob-
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lem instance and f(k) be any computable function, its
time complexity can be written as f(k) · |x|O(1). With
regard to parameterized hardness, we concern ourselves
with completeness for the class W [1] of all parameter-
ized languages that can be encoded as Boolean decision
circuits with weft at most 1 (see, e.g., ref. [13]). Here,
a circuit with weft k can have at most k large gates (i.e.
degree ≥ 3 vertices in the finite directed acyclic graph
representation of the circuit) along any given path from
an input node to an output node.

2.3 Approximation tractability and intractability

Concerning approximation tractability, we concern our-
selves with the notion of a Polynomial-Time Approxi-
mation Scheme (PTAS) and Fully Polynomial-Time Ap-
proximation Scheme (FPTAS). Here, for some error pa-
rameter ε > 0, a PTAS is a deterministic algorithm
which produces a solution for a given optimization prob-
lem with a multiplicative error of 1±ε (typically 1−ε and
1 + ε for maximization and minimization problems, re-
spectively), with a running time polynomial in length of
an input string specifying the optimization problem. If a
PTAS also has a running time polynomial in 1

ε , then we
refer to the PTAS as a FPTAS. With regard to approx-
imation hardness, we concern ourselves with hardness
for the class APX of problems admitting a constant-
ratio approximation algorithm. As there are problems
in the class APX that do not admit a PTAS unless
NP = RP , including a number of interesting special
cases of the geometric set cover problem [5], this corre-
spondingly implies that an APX-hard problem cannot
admit a PTAS unless P = NP .

3 Hardness results

Proposition 1 For a subgraph G of a Z2 integer lat-
tice with vertex set VG, we have that LPCP (G,L,Ω) is
NP -hard under both the constraint that |L| = 1 and the
constraint that L = {1, 2, . . . , |VG|}.

Proof. Letting G be a subgraph of a Z2 integer lattice
with vertex set VG, by the proof argument for “Theorem
7” of Lískiewicz et. al. [20] we have that there is an effi-
cient polynomial time counting reduction (more specif-
ically, a polynomial time many-one counting “weakly
parsimonious” reduction) from counting (case 1) SAWs
of a specific length lr ∈ N in G, and (case 2) SAWs
of all possible lengths in G, to counting st-Hamiltonian
paths in a subcubic planar graph H. The aforemen-
tioned proof argument also gives specific polynomial-
time computable formula for the number of SAWs that
must exist in (case 1) and (case 2), which we will denote
T1 and T2, respectively, for there to exist at least one
st-Hamiltonian path in H. We can also observe, as de-
tailed in “Section 3” of Lískiewicz et. al. [20], that H is

constructed via a polynomial time many-one counting
reduction from an instance of #3SAT to the problem
of counting st-Hamiltonian paths in a subcubic planar
graph.

Now, let G1 and G2 correspond to subgraphs of a
Z2 integer lattice constructed from a subcubic planar
graph H for (case 1) and (case 2), respectively, in the
proof argument for “Theorem 7” of Lískiewicz et. al.
[20]. Observe that by specifying parameters L = {lr}
and Ω = kB · ln (T1 + 1), a witness for LPCP (G1,L,Ω)
will be the null set if and only if H possesses an st-
Hamiltonian path. Similarly, observe that by specifying
parameters L = {1, 2, . . . , |VG|} and Ω = kB ·ln (T2 + 1),
a witness for LPCP (G2,L,Ω) will be the null set if and
only if H possesses an st-Hamiltonian path. As the st-
Hamiltonian path problem is NP -complete for arbitrary
instances of the graph H due to the manner in which
the graph is constructed, this yields the proposition. �

Proposition 2 LPCP (G,L,Ω) is NP -hard and
APX-hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2.

Proof. By metatheorems of Yannakakis & Lewis [28,
19] and Lund & Yannakakis [21], we have that the prob-
lem of deleting a minimum set of vertices in a simple
undirected graph G to satisfy a property Π is NP -hard
and APX-hard, respectively, if Π is a nontrivial and
hereditary property. Here, a property being nontrivial
means that it both holds and fails to hold for infinitely
many graphs, and a property being hereditary means
that it is satisfied for a graph if and only if it is satisfied
for all of the graph’s induced subgraphs.

Now, letting L ⊂ N≥2 be some finite set of vertex-
wise lengths for SAWs, observe that there are infinitely
many independent sets having no embeddings of SAWs
of length li ∈ L, and infinitely many finite undirected
graphs having more than an arbitrary number of em-
beddings of SAWs of length li ∈ L. Accordingly, in the
context of the LPCP problem where we model lattice
polymers as SAWs having vertex-wise lengths from a
set L, ∀Ω ≥ 0 we have that there are infinitely many
graphs failing to satisfy and satisfying a property Π that
S(G,L) ≤ Ω. This implies that the aforementioned prop-
erty Π is nontrivial. We also trivially have that Π is
hereditary, as deleting vertices in a graph will cause the
number of embeddings of SAWs with lengths in L to
weakly monotonically decrease.

Putting everything together, and recalling that a
witness for an instance of LPCP (G,L,Ω) is a mini-
mum set of vertices in a simple undirected graph G
whose deletion yields a graph G′ satisfying the property
S(G′,L) ≤ Ω, we have that LPCP (G,L,Ω) is NP -hard
and APX-hard ∀Ω ≥ 0 and for all finite L ⊂ N≥2. �
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4 Approximation algorithms for LPCP

Theorem 3 Letting G is a simple undirected graph
with vertex set VG, edge set EG, and treewidth
tr (G), letting ζtw = f (tr (G)) · O (|VG|+ |EG|) for
some computable function f , and letting Yinit be
an initial system configuration entropy, we have that
LPCP (G,L,Ω) admits an O

(
ζtw · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm.

Proof. Interpreting SAWs in G with lengths drawn
from the set L as a universe of elements, and treat-
ing each vertex in VG as the set of SAWs it is cov-
ered by, observe that we can correspondingly interpret
LPCP (G,L,Ω) as a partial set cover problem wherein
the objective is to cover at least ≈

(
e(Yinit) − eΩ

)
such

elements (i.e., SAW embeddings) with the minimum
possible number of sets (i.e., vertices). Accordingly, we
immediately have a

(
ln
(
e(Yinit) − eΩ

))
-approximation

algorithm as a consequence of the harmonic approxi-
mation guarantee for the greedy algorithm for partial
set cover [15] (see also Slav́ık [25] for a detailed perfor-
mance analysis of the greedy algorithm for the original
set cover problem).

In the current context, we can observe that: (obs.
1) there will be an O

(
|VG|2

)
overhead for the subrou-

tines of the greedy algorithm, where for at most |VG|
iterations, we scan at most |VG| vertices to find the
ones whose deletion will maximize coverage of the el-
ements corresponding to SAW embeddings in G; (obs.
2) the selected vertex for each iteration will necessarily
be a vertex vi ∈ VG having the largest SAW central-
ity, CSAW (G,L, vi) (as defined in the introduction of
the current work); and (obs. 3) that there will be at
most O (|VG|!) SAWs of all possible lengths in G, im-
plying that there will be at most the same number of
elements to cover in the partial set covering formulation
of LPCP (G,L,Ω) =⇒ we will need to read at most
the first O (|VG| · ln (|VG|)) bits of each vertex SAW cen-
trality CSAW (G,L, vi) to determine the largest values.
Letting Ψ be the cost of computing the SAW centrality
for a vertex vi ∈ VG, (obs. 1) through (obs. 3) imply
that the aforementioned approximation algorithm will
have a time complexity of O

(
Φ · |VG|3 · ln (|VG|)

)
.

We can now observe the following lemma concerning
the treewidth fixed-parameter tractability of computing
CSAW (G,L, vi):

Lemma 4 For a simple undirected graph G with ver-
tex set VG and edge set EG, the problem of determin-
ing the SAW centrality values for a vertex vi ∈ VG,
CSAW (G,L, vi), is treewidth FPT, and can be calcu-
lated in ζtw = O (|VG|+ |EG|) time if G has bounded
treewidth.

Proof. It suffices to show there exists a linear time
treewidth FPT algorithm for counting the number of

SAWs between an arbitrary pair of vertices vs and vt in
a graph. Observe that we can simply run this procedure
for an instance of a graph with or without a specified
vertex to determine CSAW (G,L, vi).

We proceed by appealing to an extension of Cour-
celle’s well-known algorithmic metatheorem [6, 7, 8, 9]
to counting and optimization problems [1, 10]. In
particular, we appeal to “Theorem 32” of Courcelle,
Makowsky, & Rotics [9], which states in part that if
we can express the existence of a graph property φ in
the fragment of second order logic denoted “extended”
Monodic Second Order (MS2) (see, e.g., Downey & Fel-
lows [13] for an elaboration), then we are guaranteed
an algorithm for this problem having time complexity
c ·O (|V |+ |E|), where c is a constant that depends only
on φ and the graph treewidth tw(G). Here, this time
complexity is a consequence of the proof being based on
the bottom-up traversal of a tree decomposition for a
finite simple undirected graph G, which has time com-
plexity linear in the size of the tree, and the existence
of an O (|V |+ |E|) algorithm due to Bodlaender [3] for
computing a tree decomposition of G having width at
most tw(G).

To establish the lemma at hand, it now suffices to note
that the existence of a path between an arbitrary pair
of vertices vs and vt in a graph is expressible in first-
order (FO1) logic. In particular, we refer the reader to
“pg. 4” of [7], where Courcelle discusses the use of an
FO1 auxiliary predicate “ QuasiPath’ ” for expressing
reachability between a pair of vertices in an undirected
graph. �

Putting everything together, we can set Φ =
ζtw in the earlier asymptotic time analysis of
the

(
ln
(
e(Yinit) − eΩ

))
-approximation algorithm for

LPCP (G,L,Ω) to yield the time complexity in the
statement of the current theorem. �

Theorem 5 Letting G be a simple undirected graph
with vertex set VG and letting Yinit be an initial sys-
tem configuration entropy, if an O (Ψ) deterministic
algorithm exists for computing the SAW centrality of
a vertex vi ∈ VG, CSAW (G,L, vi) with multiplica-
tive error 1 ± ε, then we correspondingly have that
LPCP (G,L,Ω) admits an O

(
Ψ · |VG|3 · ln (|VG|)

)
time(

ln
(
e(Yinit)−eΩ

)
1−2ε

)
-approximation algorithm.

Proof. Recalling our earlier reformation of
LPCP (G,L,Ω) as a partial set cover problem in
the proof argument for Theorem 3, we begin by
observing the following lemma:

Lemma 6 Letting P be an instance of the partial set
cover problem, where U is the universe of elements, X
is a collection of sets of elements from U , and 0 ≤ p ≤ 1
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is the fraction of elements that must be covered, and
letting fε−greedy be an instance of the greedy algorithm,
which in each iteration selects a set uniformly at random
from all sets in X covering a fraction (1− 2ε) of the
maximum possible number of elements that can covered

in the iteration, we have that fε−greedy will be a
(

ln(p)
2ε−1

)
-

approximation algorithm for P.

Proof. Letting α be the size of the minimum partial set
cover for P, observe that the kth iteration of fε−greedy
will, in the worst case, reduce the number of uncovered
elements in U by a fraction

(
1− 1−2ε

α

)
. Accordingly,

we can express the number of uncovered elements in
U after r iterations of fε−greedy as |U| ·

(
1− 1−2ε

α

)r
, or

equivalently, as |U| ·
((

1− 1−2ε
α

)α) rα .

We next establish that
(
1− 1−2ε

α

)α
will weakly mono-

tonically increase with α for 0 ≤ ε ≤ 1 and α ≥ 1. To
begin, we can note that:

∂

∂α

[(
1− 1− 2ε

α

)α]
≥ 0

⇐=

(
1

α

)
·
(
α+ 2ε− 1

α

)(α−1)

·(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+ 2ε− 1

α

))
≥ 0

⇐=

(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+ 2ε− 1

α

))
≥ 0

Now let ω =
(
(1− 2ε) + (α+ 2ε− 1) · ln

(
α+2ε−1

α

))
.

Here, we can observe that ∂
∂ε (ω) = 2 ln

(
α+2ε−1

α

)
, and

accordingly, that for fixed α ≥ 1, the expression ω will
be minimized for ε = 1

2 . As ε = 1
2 =⇒ ω = 0, we

therefore have that ω is non-negative whenever α ≥ 1
and 0 ≤ ε ≤ 1, and therefore that ∂

∂α

[(
1− 1−2ε

α

)α]
will

be non-negative ∀α ≥ 1. It now suffices to note that
α = 1 and 0 ≤ ε ≤ 1 =⇒

(
1− 1−2ε

α

)α ≥ 0.
Putting everything together, we can use the ap-

proximation limα→∞
(
1− 1−2ε

α

)α
= e(2ε−1) to express

the fraction of covered elements after r iterations of
fε−greedy as |U| ·

(
e(2ε−1)

) r
α . Thus, |U| ·

(
e(2ε−1)

) r
α =

p · |U| =⇒ r =
(
α·ln(p)
2ε−1

)
, yielding the lemma.

�

To establish the theorem at hand, following the proof
argument for Theorem 3, it now suffices to observe that
p · |U| from Lemma 6 can be understood to correspond
to
(
e(Yinit) − eΩ

)
, and that fε−greedy from Lemma 6 can

be understood to correspond to the O (Ψ) determinis-
tic algorithm for computing CSAW (G,L, vi) with mul-
tiplicative error 1± ε. �

Corollary 7 There exists an instance of the

O
(
Ψ · |VG|3 · ln (|VG|)

)
time

(
ln
(
e(Yinit)−eΩ

)
1−2ε

)
-

approximation algorithm for LPCP (G,L,Ω) from
Theorem 5, where letting G be a simple undirected graph
with vertex set VG and edge set EG, we have that Ψ ∈
O
(∑|L|

i=1

(
4li+O(

√
li·(ln2(li)+ln2( 1

ε )))
)
· |EG| · ln (|VG|)

)
.

Proof. This result follows directly from a re-
cent result of Björklund et. al. [2] that an

O
((

4k+O(
√
k·(ln2(k)+ln2( 1

ε )))
)
· |EG| · ln (|VG|)

)
time

and polynomial-space deterministic PTAS exists for
counting the number of length k SAWs in a simple
undirected graph G with vertex set VG and edge set
EG. �

Corollary 8 For a variant of LPCP (G,L,Ω) where
we delete edges in lieu of vertices, the time complex-
ities of the Theorem 3 and Theorem 5 approximation
algorithms become O

(
ζtw · |EG| · |VG|2 · ln (|VG|)

)
and

O
(
Ψ · |EG| · |VG|2 · ln (|VG|)

)
, respectively.

Proof. Observe that we can measure the SAW cen-
trality of edges in a lattice or graph G in exactly the
same manner (and with the same time complexity) as
we computed the SAW centrality of vertices – e.g., by
simply computing the change in the number of relevant
SAW embeddings with and without a given edge being
present. Therefore, the only change in the time com-
plexity for the Theorem 3 and Theorem 5 approxima-
tion algorithms comes from having to compute the SAW
centralities of |EG| edges instead of |VG| vertices. �

Remark 1 For a variant of LPCP (G,L,Ω) where we
consider the configuration entropies of “rigid” lattice
polymers (e.g., lattice proteins) where every embed-
ding must satisfy a set of consecutive dihedral angles
for bond edges, for an interpretation of “rigid” lattice
polymers as SAWs required to have a specific geome-
try when embedded in a lattice or graph, the time com-
plexities of the Theorem 3 and Theorem 5 approxima-
tion algorithms becomes O

(
|EG| · |VG|3 · ln (|VG|)

)
and

O
(
|EG| · |VG|3 · ln (|VG|)

)
, respectively.

Proof. It suffices to observe that if we require SAWs
to have a specific geometry, we can trivially enumerate
the number of embeddings of such SAWs in O (|EG|)
time, as any edge of a specific SAW will fix the remain-
ing edges. The stated changes in the time complexities
for the Theorem 3 and Theorem 5 approximation al-
gorithms then follow as a consequence of removing the
cost of computing SAW centralities. �

5 Concluding Remarks

For a universe of elements U , the general set cover prob-
lem is known not to be approximable within a factor of
(1− o (1)) · ln (|U|) unless P = NP [12]. Accordingly, as
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we establish the Theorem 3 and Theorem 5 approxima-
tion algorithms via reduction to equivalent partial set
cover problems, it is unlikely that we can significantly
improve the current approximation guarantees in either
case. However, concerning a future research direction,
we remark that much better performance guarantees
can be achieved for the geometric set cover problem (see,
e.g., Brönnimann & Goodrich [4]). Here, it should be
possible to take advantage of a particular embedding
of a lattice or graph to treat sets of vertices or SAWs
(e.g., in a geometric hitting set formulation) as poly-
gons or other shapes, and in some cases achieve better
approximation guarantees or time complexities.
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