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Abstract

We study randomized algorithms for the online non-
crossing matching problem. Given an online sequence of
n online points in general position, the goal is to create
a matching of maximum size so that the line segments
connecting pairs of matched points do not cross. In pre-
vious work, Bose et al. [CCCG 2020] showed that a sim-
ple greedy algorithm matches at least ⌈2n/3 − 1/3⌉ ≈
0.6̄6n points, and it is the best that any determinis-
tic algorithm can achieve. In this paper, we show that
randomization helps achieve a better competitive ratio;
that is, we present a randomized algorithm that is ex-
pected to match at least 235n/351−202/351 ≈ 0.6695n
points.

1 Introduction

In the geometric matching problems, the input is a
set of geometric objects, and the goal is to create a
pairwise matching of these objects under different re-
strictions and objectives. In the bottleneck matching
problem, for example, the goal is to create a perfect
matching of n points, assuming n is even, to minimize
the maximum length of the line segments that connect
matched pairs [8]. Using the same terminology as in
graph theory, we refer to the line segments that connect
pairs of matched vertices as the edges of the match-
ing. Other variants of the geometric matching prob-
lems ask for perfect matchings that minimize the total
length of edges [4] or maximize the length of the short-
est edge [6]. Matching objects other than points are also
studied (e.g., [1, 2]).

In the non-crossing matching problem, the input is
a set of points in general position, and the goal is to
match points so that the edges between the matched
pairs do not cross. It is relatively easy to solve the
problem in the offline setting: one can sort all points
by their x-coordinate and match pairs of consecutive
points. All points, except possibly the last one, will
be matched. The running time of this algorithm is
O(n log n), which is asymptotically optimal [5]. Other
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variants of non-crossing matching have been studied in
the offline setting; see [7]. For example, Aloupis et al.
[1] considered the computational complexity of finding
the non-crossing matching of a set of points with a set
of geometric objects that can be a line, a line segment,
or a convex polygon.

Bose et al. [3] studied the online variant of the non-
crossing matching. Under this setting, the input is a
set of n points in the general position that appears se-
quentially. When a point x arrives, an online algorithm
can match it with an existing unmatched point y, pro-
vided that the edge between them does not cross pre-
vious edges in the matching. Alternatively, the algo-
rithm can leave the point unmatched. In making these
decisions, the algorithm has no information about the
forthcoming points or the input length. The algorithm’s
decisions are irrevocable in the sense that once a pair
of points is matched, that pair cannot subsequently be
removed from the matching. The objective is to find a
matching of maximum size.

Under a worst-case analysis, where an adversary gen-
erates the online sequence, it is not possible to match all
points. For example, consider an input that starts with
two points x and y. If an online algorithm leaves the
two points unmatched, the adversary ends the sequence,
and the matching is already sub-optimal. If the algo-
rithm matches x and y, then the adversary generates
the following two points on the opposite sides of the line
between x and y, and the matching will be sub-optimal
for this input of length 4. Bose et al. [3] extended this
argument to show that no deterministic algorithm can
match more than ⌈2n/3 − 1/3⌉ points in a worst-case
input of length n. Meanwhile, they showed that any
greedy algorithm matches at least ⌈2n/3− 1/3⌉ points,
and hence is optimal. An algorithm is greedy if it does
not leave a point x unmatched if there is a suitable un-
matched point y that x can be matched to (that is, the
edge between x and y does not cross existing edges in
the matching).

1.1 Contribution

We study randomized algorithms for the non-crossing
matching problem. As in [3], we investigate worst-case
scenarios where the input is adversarially generated. We
assume the adversary is oblivious to the random choices
made by the algorithm, but it is aware of how the algo-
rithm works (that is, the “code” of the algorithm).
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We present a randomized algorithm that matches at
least ⌊235n/351− 202/351⌋ ≈ 0.6695n points on expec-
tation for any input of size n. This result establishes
the advantage of randomized algorithms over the best
deterministic algorithm, which matches roughly 0.6̄6n
points in the worst case [3].

There are two main components in our randomized
algorithm. First, the algorithm maintains a convex par-
titioning of the plane and matches two points only if
they appear in the same partition. The matching is
followed by updating the partitioning by extending the
edge between the matched pair. This partitioning en-
ables us to use a simple inductive argument to analyze
the algorithm. Second, the algorithm deviates from the
greedy strategy and gives a chance to an incoming point
x to stay unmatched even if there are one or two points
in the same convex region that x can be matched to. As
we will see, this will be essential for any improvement
over deterministic algorithms.

2 A Randomized Online Algorithm

We present and analyze a randomized online algorithm
for the non-crossing matching problem. In what follows,
for any a ̸= b we use Lab to denote the line passing
through a and b, and Sab to denote the line segment
between a and b.

2.1 Algorithm’s description

The algorithm maintains a partitioning of the plane into
convex regions and matches points only if they belong
to the same region. In the beginning, only one region
is formed by the entire plane. After four points appear
inside a convex region, one or two pairs of points are
matched, and the convex region is partitioned into two
or three convex regions by extending the line segments
passing through the matched pairs.

Let x, y, z, and w be the first four points that appear
(in the same order) inside a convex region C. In what
follows, we describe how these four points are treated.

� Upon the arrival of x, there is no decision to make,
given that there is no point inside C to be matched
with x.

� Upon the arrival of y, it is matched with x with
a probability of 1/2 and stays unmatched with a
probability of 1/2.

� Upon the arrival of z, if the pair (x, y) is already
matched, then there is no decision to make. Oth-
erwise, z is matched with x with a probability of
1/3, with y with a probability of 1/3, and stays
unmatched with a probability of 1/3.

� Upon the arrival of w, there are two possibilities to
consider:

– First, suppose a pair of points a, b ∈ {x, y, z}
is already matched, while a third point c ∈
{x, y, z}/{a, b} is unmatched. If it is possi-
ble to match w with c (that is, Swc does not
cross Sab), then w is matched with c; other-
wise, when Swc and Sab cross, there is no de-
cision to make.

– Second, suppose no pair of the first three
points are matched. Then w is matched with
a point a ∈ {x, y, z} so that the two points
b, c ∈ {x, y, z}/{a} appear on different sides
of the line Law (if there is more than one such
point, w is matched with z).

After the arrival of four points inside C, either all
points are matched into two pairs, in which case we
say a “double-pair is realized”, or only two points are
matched while the other two appear on different sides
of the matched pair, in which case we say a “single-pair
is realized.” If a single-pair is realized, the algorithm ex-
tends the line segment between the matched pair until
it hits the boundary of C; in this case, C is partitioned
into two convex regions. If a double-pair is realized, the
line segment between the first matched pairs is extended
until it hits the boundary of C or the (non-extended)
segment between the second matched pair. This is fol-
lowed by extending the line segment between the second
pair until it hits the boundary of C or an extended line
that passes through the first matched pair. In the case
of a double-pair, C is partitioned into three convex re-
gions when a double-pair is realized.

Assume n ≥ 8. A single-pair is “good” iff, after all the
n points appear, each of the two regions resulting from
extending the line segment of the matching contains at
least 2 points (discounting their potential further parti-
tionings in the future), and it is “bad” otherwise. Sim-
ilarly, a double-pair is said to be “good” if, after all the
n points appear, one of the three regions formed by ex-
tending the line segments of the two matched pairs is
empty; otherwise, it is “bad.” The presence of 2 or more
points or no points in a region leaves a possibility of
matching all pairs; hence we assert that a single/double
pair is “good” or “bad” as specified above.

When a double-pair is realized, the ordering at which
we extend the line segments between matched pairs will
impact whether the double-pair is good or bad. But ul-
timately, our worst-case analysis still holds if we change
the algorithm to extend the line segment between the
second matched pair before the first one.

The following example illustrates the algorithm’s
steps. Consider an input formed by 10 points labeled
from p1 to p10 in the order of their appearance, as de-
picted in Figure 1. The convex regions maintained by
the algorithm are highlighted in different colours. Ini-
tially, the entire plane is a convex region C0, where
point p1 appears. Upon the arrival of p2, the algorithm
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(a) The state of the algorithm after processing p1, . . . , p4.
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(b) The state of the algorithm after processing p1, . . . , p10.

Figure 1: One possible output of the algorithm when the
input is a sequence of 10 points labelled as p1, . . . , p10
in the order of their appearance.

matches it with p1 with a probability of 1/2. Suppose
(p1, p2) are matched. Then, there is no decision to be
made for p3. Upon the arrival of p4, the line segments
Sp1p2 and Sp3p4 do not cross. Therefore, p4 is matched
with p3. At this point, four points have appeared in C0

and a double-pair (p1, p2) and (p3, p4) has been realized.
Therefore, C0 is partitioned into three smaller convex
regions C1, C2, and C3 by extending Sp1,p2

and Sp3,p4

(Figure 1a). Points p5 and p6 appear respectively in C3

and C2. Since these are the first points in their respec-
tive regions, there is no decision to be made for them,
and they stay unmatched. Subsequently, p7 appears in
C3 and the algorithm matches with p5 with a probabil-
ity of 1/2. Suppose these two points are not matched.
Upon the arrival of p8 in C3, it is matched with p5 or
p7, each with a probability of 1/3, and is left unmatched
with a probability of 1/3. Suppose (p5, p8) are matched.
Next, point p9 appears in C2 and is matched with p6
with a probability of 1/2, and stays unmatched with a
probability of 1/2. Suppose (p6, p9) are matched. Fi-
nally, point p10 appears on C3. Given that the Sp7p10

crosses Sp5p8
, there is no decision to be made, and p10

stays unmatched. At this point, four points have ap-
peared in C3, and a single-pair (p5, p8) has been realized.
Therefore, C3 is partitioned into two smaller convex re-
gions C4 and C5 by extending Sp5,p8 (Figure 1b).

2.2 Algorithm’s analysis

Let f(n) denote the expected number of unmatched
points by the algorithm when input is formed by n
items. We use an inductive argument to find an upper
bound for f(n). First, we prove the following lemma,
which is used when establishing the base of the induc-
tion.

Lemma 1 After four points arrive in a convex region
C, with a probability of at least 1/3, a double-pair is
realized, and with a probability of at most 2/3, a single-
pair is realized.

Proof. Let x, y, z, and w denote the four points in the
same order they appear. There are two cases to con-
sider:

� Suppose Sxy crosses Szw. In this case, a double-
pair is realized iff (i) x and y are not matched, and
(ii) z is matched with either x or y (in which case
w will be matched to the other point). The chance
of (i) is 1/2, and the chance of (ii) is 2/3; therefore,
a double-pair is realized with a chance of 1/3.

� Suppose Sxy does not cross Swz. Then, (x, y) are
matched with a probability of 1/2, and after that,
(w, z) are matched, and a double-pair is realized
with a chance of 1/2.

□

Using Lemma 1, we can prove the following lemma,
which serves as the base case for the inductive proof of
the main result.

Lemma 2 We have f(0) = 0, f(1) = 1, f(2) = 1,
f(3) = 4/3, f(4) ≤ 4/3, f(5) ≤ 5/3, f(6) ≤ 20/9, and
f(7) ≤ 26/9.

Proof. Suppose n items appear in a convex region C.
The proof is trivial for n ≤ 2. In what follows, we prove
the lemma for other values of n.

� For n = 3, it is possible that all points stay un-
matched, which happens when the second point is
not matched with the first one (with a probability
of 1/2), and then the third point is not matched
with any of the first two points (with a probability
of 1/3). Therefore, with a probability of 1/6, all
three points stay unmatched, and one point stays
unmatched with a probability of 5/6. We can write
f(3) = 1/6 · 3 + 5/6 · 1 = 4/3.

� For n = 4, using Lemma 1, we can write f(4) ≤
1/3 · 0 + 2/3 · 2 = 4/3.

� For n = 5, after the first four points appeared,
either a single-pair or a double-pair is realized:



34th Canadian Conference on Computational Geometry, 2022

– Suppose a single-pair is realized. Then, C is
partitioned into two regions, one containing
one point and the other one containing two
points. Therefore, it is expected that f(1) +
f(2) = 2 points stay unmatched.

– Suppose a double-pair is realized. Then, the
first four points are matched, and only the
fifth point stays unmatched.

By Lemma 1, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we
can write f(5) ≤ 1/3 · 1 + 2/3 · 2 = 5/3.

� For n = 6, after the first four points appeared,
either a single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is
partitioned into two regions. Either (i) the
fifth or the sixth points appear in the same
region, in which case one region will have one
point, and the other one will have three points,
or (ii) the fifth and the sixth points appear
in different regions, in which case each region
contains two points. Therefore, it is expected
that at most max{f(1)+ f(3), f(2)+ f(2)} =
7/3 points stay unmatched.

– Suppose a double-pair is realized. Then, at
most 2 points (the last two points) stay un-
matched.

By Lemma 1, with a probability of at least 1/3, a
double-pair is realized, and with a probability of at
most 2/3, a single-pair is realized. Therefore, we
can write f(6) ≤ 1/3 · 2 + 2/3 · 7/3 = 20/9.

� For n = 7, after the first four points appeared,
either a single-pair or a double-pair is realized:

– Suppose a single-pair is realized. Then, C is
partitioned into two regions. Either (i) the
fifth, the sixth, and the seventh points all ap-
pear in the same region, in which case one re-
gion has one point, and the other one has four
points (Figure 2a), or (ii) one of these points
appear in one region, and the other two ap-
pear in the other region, in which case one
region contains two points, and the other re-
gion contains three points (Figure 2b). There-
fore, at most max{f(1)+ f(4), f(2)+ f(3)} ≤
max{1 + 4/3, 1 + 4/3} = 7/3 points stay un-
matched.

– Suppose a double-pair is realized. Then, at
most three points stay unmatched, which hap-
pens when any of the three regions formed
extending the line segments between the
matched pairs includes a point (see Figure 2c).

a

c
d

b

(a) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c
d

b

(b) The case where a single-pair is real-
ized, and the last three points appear in
different regions.

a

c

b
d

(c) The case where a double-pair is real-
ized, and the last three points appear in
different regions.

Figure 2: The cases used in the calculation of f(7);
a, b, c, d ∈ {x, y, z, w} where x, y, z, and w are the first
four points in the same order of their appearance.

Unlike other cases, for n = 7, the upper bound
for the expected number of unmatched points is
larger when a double-pair is realized compared to
when a single-pair is realized; hence we cannot use
Lemma 1. Instead, we note that the probability
of a single-pair being realized is at least 1/6. This
is because the first three points stay unmatched
with a probability of 1/2 · 1/3 = 1/6, and then
the fourth point gets matched to the point that
bisects the unmatched points (by the definition of
the algorithm). Therefore, we can write f(7) ≤
5/6 · 3 + 1/6 · 7/3 = 26/9.

□

We use an inductive argument to prove f(n) ≤ cn +
d where c = 116/351 ≈ 0.3304 and d = 32c − 10 =
202/351 ≈ 0.5754. First, we apply Lemma 2 to establish
the base of induction in the following theorem.

Lemma 3 For n ∈ [2, 7], it holds that f(n) ≤ cn + d
where c = 116/351 and d = 202/351.

Proof. The proof follows from Lemma 2. For n = 2,
we have f(2) = 1 < 2c+ d (since 2c+ d > 1.2364). For
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n = 3, we have f(3) = 4/3 = 3c + d (since 3c + d >
1.5669). For n = 4, we have f(4) ≤ 4/3 < 4c + d
(since 4c + d > 1.8974). For n = 5, we have f(5) ≤
5/3 < 5c + d (since 5c + d > 2.2279). For n = 6, we
have f(6) ≤ 20/9 < 6c + d (since 6c + d > 2.5584).
For n = 7, we have f(7) ≤ 26/9 = 7c + d (note that
7c+ d = 26/9). □

Lemma 4 Consider an input sequence with n ≥ 8
points. Suppose at least four points appear in some con-
vex region C maintained by the algorithm. At least one
of the following statements holds with respect to the first
four points in C, regardless of how an adversary gener-
ates the input:

� A good single-pair is realized in C with a probability
of at least 1/6.

� A good double-pair is realized in C with a probability
of at least 1/6.

Proof. Let x, y, z, and w denote the first four points in
the same order that they appear in C.
First, suppose the convex hull formed by the four

points is a triangle ∆ which includes the fourth point
inside it. We consider the following two cases:

� Assume w is the point that is inside ∆. Then the
pairs (x, y) and (w, z) form a double-pair that is
realized with a probability of 1/2. This is because
the pair (x, y) is matched with a probability of 1/2,
and then the pair (w, z) is matched with a proba-
bility of 1. Meanwhile, (w, z) is a single-pair which
is realized with a probability of 1/6. This is be-
cause, with a chance of 1/6, the first three points
stay unmatched, and then the algorithm matches
w to z with a chance of 1. Now, if the double pair
formed by the pairs (x, y) and (w, z) is bad, then
there should be at least one future point on each
side of the line passing through (w, z), which means
(w, z) is a good single-pair (see Figure 3a).

� Assume w is a vertex of ∆ and another point c ∈
{x, y, z} is inside ∆. Let a, b be the other two points
in {x, y, z}. Then, the pairs (a, b) and (c, w) form
a double-pair which is realized with a probability
of at least 1/6. This is because the pair (a, b) is
matched with a probability of at least 1/6 (the pair
(a, b) is matched with a probability of 1/2 if z /∈
{a, b}, and with a probability of 1/6 if z ∈ {a, b}),
and then w is matched with c with a probability of
1. Meanwhile, the pair (c, w) is a single-pair which
is realized with a probability of 1/6. Similar to the
previous case, if the double pair formed by the pairs
(a, b) and (c, w) is bad, then there should be at least
one future point on each side of (a, b), which means
(c, w) is a good single-pair (see Figure 3b).
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Figure 3: An illustration of the proof of Lemma 4. (a)
when w is inside the triangle ∆, either the single-pair
formed by (w, z) is a good single-pair, or the double-
pair formed by (x, y), (w, z) is a good double-pair. (b)
when c ∈ {x, y, z} is inside the triangle ∆, either the
double pair formed by (a, b), (w, c) is a good double-
pair, or the single-pair formed by (w, c) is a good single-
pair. (c) the case when at least one of the diagonals of
the convex hull formed by the four points (here (w, b))
forms a good single-pair (d) when none of the single-
pairs formed by the diagonals of the convex hull are
good, all remaining points appear in one of the quarter-
planes formed by extending these diagonals; therefore,
the pair of points on the boundary of the quarter-plane
(here (b, c)) and the pair of points outside the quarter-
planes (here (w, a)) form a good double-pair.

Next, suppose the convex hull formed by the four
points is a quadrilateral and includes all of them. Con-
sider the two single-pairs formed by the diagonals of
the convex hull. Any of these pairs can be realized with
a probability of at least 1/6. Specifically, the diago-
nal involving w is realized when no pair of points from
{x, y, z} are matched, which takes place with a proba-
bility of 1/6. The other diagonal is either between x
and y, which is realized with a probability of 1/2 or
between z and a ∈ {x, y}, which is realized with a prob-
ability of 1/6. Therefore, if any of the two diagonals
form a good single-pair, the statement of the lemma
holds, and we are done (see Figure 3c). If none of the
two diagonals is good, then all the remaining points in
the input sequence should appear in one of the quarter-
planes formed by extending these diagonals (see Fig-
ure 3d). Then, the double-pair formed by the pair of
points on the boundary of the quarter-plane (points b
and c in Figure 3d) and the pair of points outside of the
quarter-plain (points w and a in Figure 3d) is a good
double-pair. The probability of such a good double-pair
being realized is at least 1/6. This is because one of the
pairs in the double-pair involves two of the first three
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points. If these points are (x, y), the double-pair is re-
alized with a probability of 1/2; otherwise, it is realized
with a probability of 1/6. □

We are now ready to prove the main result.

Theorem 5 There is a randomized algorithm that, for
any input formed by n ≥ 2 points, leaves at most cn+ d
points unmatched on expectation, where c = 116/351
and d = 202/351.

Proof. We use an inductive argument to show that our
algorithm satisfies the conditions specified in the theo-
rem. For n ≤ 7, the claim holds by Lemma 3. Suppose
n ≥ 8, and assume that for any m < n, it holds that
f(m) ≤ cm+ d.

First, we claim that the number of unmatched points
is at most cn + d + (2 − 6c) when a bad single-pair is
realized or a bad double-pair is realized after the first
four points of the input sequence appear. If a bad single-
pair is realized, then either (I) there is one point on
one side of the matched pair and n − 3 > 2 points on
the other side, or (II) there is no point on one side of
the matched pair and n − 2 > 2 points on the other
side. For (I), by the induction hypothesis, the number
of unmatched points on the side with n−3 points will be
at most f(n−3) ≤ cn−3c+d. Therefore, the number of
unmatched points is at most f(n−3)+1 ≤ cn−3c+d+
1 < cn+ d+(2− 6c). The last inequality holds because
c < 1/3. For (II), the number of unmatched points will
be at most f(n− 2) ≤ cn+ d− 2c < cn+ d+ (2− 6c).

If a bad double-pair is realized, then one of the follow-
ing cases holds for the three regions formed by extending
the line segments between the matched pairs (regardless
of the ordering at which we extend the line segments):

i) One region contains n−6 points, and the other two
regions each contains one point. Note that n− 6 ≥
2 since n ≥ 8. By the induction hypothesis, the
expected number of unmatched points is at most
2 + f(n− 6) = cn+ d+ (2− 6c).

ii) One region contains m ≥ 2 points, another region
contains one point, and the third region contains
n − m − 5 ≥ 2 points. The expected number of
unmatched points is at most f(m)+f(n−m−5)+
1 ≤ cn− 5c+ 2d+ 1 < cn+ d+ (2− 6c). The last
inequality holds because c+ d < 1.

iii) One region contains m1 ≥ 2 points, one region con-
tains m2 ≥ 2 points, and the third region contains
m3 = n −m1 −m2 − 4 ≥ 2 points. The expected
number of unmatched points is at most f(m1) +
f(m2) + f(m3) ≤ cn− 4c+ 3d < cn+ d+ (2− 6c).
The last inequality holds because c+ d < 1.

In summary, if a bad single-pair or a bad double-pair is
realized, the expected number of unmatched points is
at most cn+ d+ (2− 6c), and the claim holds.

By Lemma 4, after the appearance of the first four
points, either a) a good single-pair or b) a good double-
pair can be realized with a probability of at least 1/6.

Suppose case a) holds, that is, a good single-pair is
realized with a probability of at least 1/6, which im-
plies a bad single-pair or double-pair is realized with a
probability of at most 5/6. In case the good single-
pair is realized, there will be m ≥ 2 points on one
side of the line segment connecting matched pair, and
n−m− 2 ≥ 2 points on the other side. Therefore, the
expected number of unmatched points will be at most
f(m)+f(n−m−2) ≤ cn+2d−2c = (cn+d)+(d−2c).
On expectation, the number of unmatched points will be
at most 1/6((cn+d)+(d−2c))+5/6(cn+d+(2−6c)) =
cn+ d+ 1/6(d− 32c+ 10) = cn+ d. The last equality
holds because d = 32c− 10.

Next, suppose case b) holds, that is, a good double-
pair is realized with a probability of at least 1/6, which
implies a bad single-pair or double-pair is realized with
a probability of at most 5/6. If the good double-pair
is realized, by definition, at least one of the three con-
vex regions formed by extending the double-pair will be
empty. For the other two regions, we have the following
cases:

i) One region is empty, and the other contains n −
4 ≥ 2 points, in which case the expected number of
unmatched points becomes f(n−4) ≤ cn+d−4c <
cn+d+(1−5c). The last inequality holds because
c < 1.

ii) One region contains a single point, and the other
one contains n− 5 ≥ 2 points. The expected num-
ber of unmatched points will be at most f(n−5)+
1 ≤ cn+ d+ (1− 5c).

iii) Both regions include m ≥ 2 and n − m − 4 ≥ 2
points. In this case, the expected number of un-
matched points will be at most f(m) + f(n−m−
4) ≤ cn+ d+(d− 4c) < cn+ d+(1− 5c). The last
inequality holds because c+ d < 1.

Therefore, as long as the good double-pair is realized,
the expected number of unmatched points will be at
most cn + d + (1 − 5c). Then we can write f(n) ≤
1/6((cn + d) + (1 − 5c)) + 5/6((cn + d) + (2 − 6c)) =
cn + d + 1/6(11 − 35c) < cn + d. The last inequality
holds since c > 11/35. □
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