CCCG 2022, Toronto, ON, Canada, August 25-27, 2022

Computational Complexity of One-Dimensional Origami and Its Application
to Digital Signature
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Abstract

We investigate the computational complexity of a sim-
ple one-dimensional origami problem. We are given a
paper strip P of length n+1 and fold it into unit length
by creasing at unit intervals. Consequently, we have sev-
eral paper layers at each crease in general. The number
of paper layers at each crease is called the crease width
at the crease. For a given mountain-valley assignment
of P, in general, there are exponentially many ways of
folding the paper into unit length consistent with the as-
signment. It is known that the problem of finding a way
of folding P to minimize the maximum crease width of
the folded state is NP-complete. In this study, we inves-
tigate a related paper-folding problem. For any given
folded state of P, each crease has its mountain—valley
assignment and crease-width assignment. Then, can we
restore the folded state uniquely when only partial infor-
mation about these assignments is given? We introduce
this natural problem as the crease-restore problem, for
which there are a number of variants depending on the
information given about the assignments. In this paper,
we show that some cases are polynomial-time solvable
and that some cases are strongly NP-complete. As an
application of the problem, we also propose a digital
signature system based on the hardness of the crease-
restore problem.

1 Introduction

Recently, computational origami has attracted the in-
terest of theoretical computer scientists. In this pa-
per, we focus on one of the simplest origami mod-
els: one-dimensional origami. This origami model in-
volves a long rectangular strip of paper, which can be
abstracted by a line segment and is uniformly sub-
divided by creases. At each crease, we fold the pa-
per strip by degree 7 in either one of two choices for
the direction of folding: a mountain fold, or a valley
fold. Finding the number of feasible (i.e., without self-
crossing) ways of folding a paper strip is known as a
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stamp-folding problem, for which the exact value re-
mains open [5]: Experimentally, a paper strip of length
n—+1 has a total of (3.06™) feasible ways of folding and,
on average, (1.53") ways of folding for a given ran-
dom mountain—valley assignment (“MV assignment,”
for short) of length n.

Figure 1: Example of MV  assignment
MMVMMVMVVVV for paper strip of length
12.

Mountain fold . Segment 5 .— Segment 2

Max. cw:%g

. Valley fold ~~Max. CW=7
[51413(6(7|L|2/8]L0]112]11j9]  [2[1[3}4{9[11[12/10}8]7|6]5]
Figure 2: Side views of two
folded states for MV assignment
MMVMMVMVVVV. [5|4]316|7]1|2/8|10]12|11]9]

and [2|1]3|4|9]/11|12|10|8]7|6|5] describe the orders of
paper segments from the top. The first folded state has
the maximum crease width of 3, whereas the second
has the maximum crease width of 7.

However, even when an MV assignment is given for
the creases, the problem remains counterintuitive. In
general, there are exponentially many ways of folding
a paper strip with a given MV assignment. For exam-
ple, a paper strip of length 12 with the MV assignment
MMVMMVMVVVV, shown in Figure 1, has 100 dif-
ferent feasible folded states (as verified by a computer
program), among which some are easy, while some are
difficult, to fold flat. The main reason behind these
differences in difficulty is the number of paper layers
between two paper segments at each crease. For ex-
ample, in the first folded state shown in Figure 2, the
maximum number of layers at a crease is 3, whereas in
the second folded state, the maximum number of lay-
ers is 7. From this viewpoint, an optimization problem
was proposed and investigated in [6]. That paper in-
troduced a new concept known as the “crease width” of
a crease, which is defined by the number of paper lay-
ers at a crease in a folded state. Therein, it was proved
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that the decision problem for the maximum crease width
of a given MV assignment is NP-complete. (In fact,
among the 100 feasible folded states for the MV as-
signment M MV MMV MVVVYV shown in Figure 1, the
first folded state is the only one with a maximum crease
width of 3, which is optimal.)

Now, we consider the information necessary for spec-
ifying a folded state. We will observe that given both
an MV assignment and a crease-width assignment for
every crease (“CW assignment,” for short), the folded
state is uniquely determined if it is feasible. Then, what
happens if we are given partial information about these
assignments? This natural question leads us to our
new computational origami problem, which is named
the crease-restore problem. In this paper, we first show
that the crease-restore problem is strongly NP-complete
in general. More specifically, when we are given part of
the MV assignment and CW assignment, the decision
problem that asks whether there exists a feasible folded
state is strongly NP-complete. We also show that even
if the entire MV assignment is given, the crease-restore
problem is still strongly NP-complete when only a part
of the CW assignment is given.

Based on the hardness, we propose a digital signature
system. In this system, an MV assignment is fixed as
the ID of a user, and a CW assignment is used as its
corresponding private key. Then, a pair consisting of
the user ID and a partial CW assignment is used as a
public key. The security of the signature system is based
on the hardness of the strong NP completeness of the
crease-restore problem.

2 Preliminaries

Herein, a paper strip refers to a one-dimensional line seg-
ment with creases at every integer position. (In other
words, we ignore the thickness and width of the paper.)
The paper strip is rigid except at the creases; that is,
we are allowed to fold only along these creases at in-
teger positions. We are given a paper strip of length
n + 1 placed in the interval [0,n + 1]. (We will refer
to this state as an initial state.) We call each paper
segment between i and ¢ 4+ 1 at the initial state the seg-
ment i + 1. We assume that the top and bottom sides
of the 1st segment are fixed. The paper strip is in a
folded state if each crease is folded by a degree 7 or
—m, and the folded strip is placed in the interval [0, 1].
The paper strip is mountain (valley)-folded at a crease
i when the ith segment and the (i + 1)st segment are
folded in the direction such that their bottom sides (top
sides, respectively) are close to touching (although they
may not necessarily touch if they have some other pa-
per layers between them). For a given paper strip, an
MYV assignment at crease i is either M or V', where M
refers to a “mountain fold,” and V refers to a “valley

fold.” A folded state is feasible if the paper strip does
not penetrate itself in the given state.

We then provide formal definitions of feasibility and
MV assignment for the sake of precision. When we ob-
tain a folded state of P placed in the interval [0, 1], the
segments 1,2,...,n,n+ 1 are positioned in this interval
in some proper order. We define an ordering function f
such that f(i) = j denotes that the segment ¢ is the jth
layer in the folded state with 1 < 4,5 < n+ 1. (That
is, for the first folded state [5|4]3]6|7]|1|2|8|10]12|11]|9]
shown in Figure 2, we have f(1) =6, f(2) =7, f(3) =
3,f(4) = 2,f(5) = 1, and so on.) Then, for each ¢
with 1 < i < n, the crease ¢ (between segment i and
i+ 1) is mountain-folded in the folded state if and only
if (1) i is odd, and f(i) < f(i+ 1), or (2) i is even, and
f(@) > f(i+1). Inversely, the crease ¢ is valley-folded if
and only if (3) 4 is odd, and f(i) > f(i + 1), or (4) i is
even, and f(i) < f(i +1). When the paper strip does
not penetrate itself, the creases form a nest structure.
Precisely, a folded state is feasible if and only if for any
pair of integers i and j (i # j) with the same parity,!
we have either

o max{f(i), f(i +1)} < min{f(j),

is over j),

e max{f(j),

is over 1),
) < fU) <fU+D) < [f(i+1), f() < F(+1) <

(i
() < fG+1), fi+1) < f(5) < fG+1) < f(i),
( +1) < f(j) < f(7+1) < f(i) (crease i pinches

fG+1)} (crease i

fG+1D)} <min{f(@), f(i+1)} (crease j

(1) < f+1) < f(G+1), f(5) < f(i+1) <
1) < f(i) < fi+1) < f(5), 0
)< f(i+1) < f(j) (crease j pmches

(Consequently, the ith and jth creases should cross
when we have f(i) < f(j) < fe+1) < f(j+1) or
its symmetric cases, which denotes that the paper strip
penetrates itself.)

For a given paper strip P of length n + 1, we con-
sider a feasible folded state. Then, the crease width at
crease i is defined by |f(i) — f(i +1)| — 1, which gives
the number of paper layers between the ith segment and
the (¢ + 1)st segment joined at the crease i.

On the other hand, for a folded state, the CW assign-
ment is the assignment of crease widths to the creases.

In this study, we introduce the following crease-
restore problem. We are given partial information on
the MV and CW assignments of the creases of a folded
state of P. Then, the solution to the problem is a
folded state of P that satisfies these assignments. Pre-
cisely, the input of the crease-restore problem is com-
posed of two functions: As : [1,n] — {M,V,x}, and

IThey satisfy the parenthesis theorem.
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Cw : [1,n] = {0,1,...,n — 1,%}. (Note that we have
0 < Cw(i) <n—1forany 1 <i < mn.) The problem
asks if there exists a feasible folded state of P consistent
with these two functions. Precisely, a folded state sat-
isfies these two functions if and only if for each crease i
with 1 <4 <n, (1) it is mountain-folded if As(i) = M
or As(i) = x, (2) it is valley-folded if As(i) = V or
As(i) = *, and (3) the crease width at ¢ is equal to
Cw(i) or Cw(i) = *.

Subsequently, we propose a digital signature system.
A digital signature is a mathematical or computational
scheme for verifying the authenticity of digital messages
or documents. The scheme typically consists of three al-
gorithms. A key generation algorithm selects a private
key uniformly at random from a set of possible private
keys. The algorithm outputs the private key and a cor-
responding public key. A signing algorithm then pro-
duces a signature for given a message and a private key.
Finally, a signature verifying algorithm accepts or re-
jects the message’s claim to authenticity given the mes-
sage, public key, and signature. See, e.g., [3] for further
details.

3 Computational Complexity of Crease Restore
Problem

In this part of the study, we consider a number of vari-
ants of the crease-restore problem. We first consider a
few trivial cases:

Observation 1 ([5, Proposition 1]) All instances of
the crease-restore problem are yes instances when
As(i) € {M,V} and Cw(i) = * for every i in
{1,2,...,n}.

Proof. Intuitively, we can repeat “end folding” for each
i=1,2,...,n following As(i).2 O

Observation 2 We can solve the crease-restore prob-
lem in linear time when Cw(i) € {0,1,...,n — 1} and
As(i) € {M,V} for every i in {1,2,...,n}.

Proof. We first fix segment 1 of height 0, where the
height indicates the order of each paper segment in [0, 1]
in the final folded state. (We denote the height of seg-
ment 1 by h(1) = 0.) Then, for each i = 1,...,n,
we can compute the height of the segment i + 1 from
the height of the segment ¢ by adding or subtract-
ing Cw(7). The addition or subtraction is determined
by the parity of i and As(i). Precisely, (1) h(i) =
h(i —1) + Cw(i) + 1 if ¢ is odd and As(i) = V, (2)
h(i) = h(i—1)+Cw(i)+1if i is even and As(i) = M, (3)
h():h(z—l) (Cw(i)+1)ifiis odd and As(i) = M,
r (4) h(z) = h(i — 1) — (Cw(i) + 1) if 4 is even and

2See [1] for the definition of the end folding. In our context,
we just repeat folding along the leftmost crease line.

As(i) = V. After computation of the heights, we check
if the folded state is feasible, and if the heights have
no gaps. The folded state has no gap if and only if
there is an integer j with j < 0 such that there ex-
ists exactly one paper segment of height j’ for every
i =4,7+1,...,5 +n. This consecutiveness check of
heights can be done in linear time in the same tech-
nique as in bucket sort. The feasibility can be confirmed
through checks of the nest structure. It is discussed in
[4, Sect. 3.2.3] in the context of recognition of valid lin-
ear orderings in 2D map folding. Using the technique in
[4, Sect. 3.2.3], it can be confirmed in linear time. O

Now, we turn to the main theorem in this section.

Theorem 1 The crease-retrieve problem is strongly
NP-complete when Cw(i) € {0,1,...,n — 1,%} and
As(i) € {M,V} for every i in {1,2,...,n}.

Proof. It is easy to see that the problem is in NP. We
prove the hardness via a reduction from the following
problem 3-PARTITION, which is known to be strongly
NP-complete even if B is bounded from above by some
polynomial in m [2].

3-PARTITION

Input: Positive integers ay,aso,as,...,as;, such that
Zj’z a; = mB for some positive integer B and
B/4 <a; < B/2for 1< j <3m.

Question: Is there a partition of {1,2,...,3m} into
m subsets A1, As, ..., A, such that ZjeAk a
Bforl1<k<m?

To begin with, we describe a construction of a paper
strip P for a given instance ai,...,as, and B of 3-
PARTITION. The basic idea is slightly similar to the one
in [6].

The strip P consists of a folder part and 3m gadget
parts (Figure 3). The folder part consists of creases
n [1,2m + 3], and each of the 3m gadget parts corre-
sponds to a; (1 < j < 3m), which contains 4m-+28m?a;
consecutive points on the strip. That is, the total
length of P is 2m + 3 + Zj;nl(4m + 28m?a;) = 3 +
2m + 12m? + 28m3B. In the folder part, creases i with
1 <i < 2m+3 form a zig-zag pattern via the MV assign-
ment VMVM --- MV, as shown in Figure 3. Precisely,
As(i) = V for odd i, and As(i) = M for even i. For
even i, we let Cw(i) = 0; that is, we cannot have any
paper layers in the folded state at this crease (assigned
M). For i =1 and i = 2m + 3, we set Cw(i) = *; that
is, we can have any number of paper layers in the folded
state at these creases. These two creases 1 and 2m + 3
are called trash folders, where we will put useless paper
layers. For each ¢ with ¢ = 3,5,7,...,2m + 1, we set
Cw(i) = 14m?B + 6m. We call these m creases “unit
folders.”

Now, we move to the gadget part (Figure 4). For each
integer a;, we let b; = 14m?a;. We first consider the
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Figure 4: Construction of gadget part.

case that j is an odd number. Then, the jth gadget part
consists of a zig-zag pattern of length 2m + b; (which
can be represented by (VM)%*2™ in a standard rep-
resentation of string). Let s; be the first crease of the
Jjth gadget part (which depends on a; with all j/ < j).
Then, As(i) =V for even ¢ = s; + 2k, and As(i) = M
for odd i = s; +2k+1, with 0 < k < m+b;/2 (we note
b; is even). This zig-zag pattern contains three parts.
We set their crease widths as follows: (1) Cw(i) = =
for i = s; +k for 0 < k < 2m, (2) Cw(i) = 0 for
i=s;+kfor 2m < k < 2m+b;, and (3) Cw(i) = =
for i = s; +k for 2m +b; < k < 2m +b; +2m. We
call the first and third parts spring parts and the second
part b; part. Based on the requirement in (2), we can-
not put any paper layers at the creases in the b; part.
Intuitively, this part can be considered as “glued,” and
this thickness of b; should be put into some folder. On
the other hand, each of the spring parts can be split in
any way, and they can be put into any folders, including
trash folders.

We next consider the case that j is an even number.
The zig-zag pattern (MV )% 2™ is obtained via flipping
of the M and V used in the odd case. The crease widths
are identical: (1) Cw(i) =« for i =s; +k for 0 <k <
2m, (2) Cw(i) = 0 for i = s;+k for 2m < k < 2m+2b;,
and (3) Cw(i) = * for i = s; + k for 2m +2b; < k <
2m +b; + 2m.

The construction of the paper strip P can be done in
polynomial time. Therefore, it is sufficient to show that
P can be folded into a unit length without penetration
such that each crease i satisfies the condition for the
crease width Cw(7) if and only if the instance of 3-
PARTITION is a yes instance.

Figure 5: Overview of folding.

*

Figure 6: One feasible way of folding.

We first observe that most parts of P are in pleat fold-
ing MVMV -« or VMV M ---. As shown in Figure 5,
the folder part consists of m unit folders of crease width
14m? B+6m between two trash folders, and each gadget
corresponding to a; consists of a “glued” part of width
2b; between two springs of width 2m.? Therefore, we
consider putting gadget parts into unit folders to fill up
each folder by exactly 14m?B + 6m layers of paper.

We first assume that the instance of 3-PARTITION
is a yes instance and show that P can be folded into
unit length. Because the instance is a yes instance, the
positive integers a1, as,as,...,as, can be partitioned
into m subsets Ay, Ao, ..., A,, such that EjeAk a; =B
for 1 < k < m. Then, we fill the unit folders as follows
(Figure 6). We assume that ay is put into a subset Ay
for some k’. Then, we put the b; gadget into the k’th
unit folder, and two paper layers for each unit folder, as

3The width here refers to the number of layers.
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shown in Figure 6. The other remaining segments in the
two springs are put into trash folders on both sides. We
can observe that these springs also act as unit folders
after putting the b; gadget into Ay/. Therefore, we can
repeat the same process for each as, as, ..., asy,. Then,
by the assumption with b; = 14m2aj7 each unit folder
A has 14m?B + 6m paper layers at its corresponding
crease. Thus, we obtain the required folded state of P.

Next, we assume that the paper strip P is folded, and
we construct a solution for 3-PARTITION from it. We
first observe that the total number of paper layers in the
spring parts is 3m -4m = 12m?, which is much less than
14m?. Therefore, because each b; = 14m?a; and B/4 <
aj < B/2, if a unit folder contains 14m?B + 6m paper
layers, it is easy to see that each unit folder contains
exactly three b; parts for some b;, b;s and bj». Then,
these parts together make 14m?2B paper layers because
6m is excessively small compared to each of b;, b;/, and
bj». Therefore, we have a; +aj +aj» = B for this unit.
We can use the same argument for each unit folder,
and we can construct a solution for 3-PARTITION, which
completes the proof. O

In fact, if the proof of Theorem 1 is considered care-
fully, it can be inferred that the MV assignment in the
proof is not necessary.

Corollary 2 The crease-retrieve problem is strongly
NP-complete when Cw(i) € {0,1,...,n — 1,x} and
As(i) =« for every i in {1,2,...,n}.

Proof. The reduction is identical to one given in the
proof of Theorem 1, but we provide no MV assignment
to P. When the instance of 3-PARTITION is a yes in-
stance, we can use the same method as that used in the
proof, and thus P can be folded into unit length in a
way that satisfies the two functions. Therefore, we as-
sume that the paper strip P is folded, and we construct
a solution for 3-PARTITION from it.

We first focus on the folder part. We have Cw(i) =
0 for each even 4, and Cw(i) has the same value for
each i = 3,5,7,...,2m + 1. If we valley-fold at some
even i, two consecutive unit folders have to have the
same crease width, which is impossible. On the other
hand, if we mountain-fold at some odd 4, we cannot have
Cw(i — 1) = Cw(i+ 1) = 0. Therefore, the folder part
should make a pleat folding.

Next, we focus on the gadget part for a;. In this part,
we have consecutive b;+1 creases ¢ with Cw(i) = 0. For
the same reason as for the folder part, we can observe
that this part should make a pleat folding to satisfy the
condition. Then, to satisfy the crease-width conditions
in all unit folders, this part has to be put into some unit
folder to contribute to its crease width by b;.

Therefore, we can use the same argument as that
applied in the proof of Theorem 1, and obtain the
claim. 0

4 Application to Digital Signature System

W
A
o
“
RN
W

Figure 7: Six ways of folding a strip of length three.

In this section, we propose a digital signature sys-
tem. The security of this system relies on the compu-
tational complexity of the crease-retrieve problem. We
first observe the complexity of the stamp-folding prob-
lem in [5]. It is easy to see that one folded state can be
represented by a permutation of [1,n + 1]. For exam-
ple, a strip of length three has 3! = 6 ways of folding
(Figure 7), which can be represented by [1|2|3], [1]3|2],
[31112], [3]2]1], [2I3]1], and [2]|1]3]. However, when n is
large, some of the permutations will cause penetrations.
In general, the following is known.

Theorem 3 ([5]) For a random MYV assignment (of
length n) for a paper strip of length n + 1, the expected
number of ways of folding is Q(1.53™).

We note that ©(1.53™) is the theoretical lower bound;
by contrast, it is ©(1.65™) experimentally.

Therefore, when we generate a random MV assign-
ment of length n, there are Q(1.53™) permutations of
[1,n + 1] corresponding to feasible folded states that
satisfy the MV assignment. When we give a proper se-
quence of crease widths of length n, the folded state of
the paper strip can be reconstructed in linear time by
Observation 2. On the other hand, when a part of the
sequence of crease widths is given, finding the folded
state is NP-complete because its decision problem is
NP-complete by Theorem 1. Based on the aforemen-
tioned observation, we can propose the following digital
signature system with a public key cryptosystem.

As a preparation, every user first fixes a unique ID
from a random MV assignment A of length n. This ID
is a part of the public key.

4.1 Key generation algorithm G

From the MV assignment A, the algorithm G first gen-
erates a feasible folded state F(A), which can be rep-
resented by a permutation p,, of [1,n 4 1]. An efficient
algorithm that generates F'(A) from A can be obtained
via modification of an algorithm in [6].

In [6], the authors show an algorithm for finding the
folded state that achieves the minimum total crease
width, which is defined by Y7 ; Cw(i), for a given MV
assignment. The algorithm in [6] enumerates all feasible
folded states for a given MV assignment, and it is proved
that this algorithm shows that finding the minimum to-
tal crease width is fixed parameter tractable. That is,
for a given MV assignment, the algorithm finds a feasi-
ble folded state in polynomial time if its minimum total
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crease width is a constant. Therefore, we modify this
algorithm and construct a feasible folded state F(A) for
an MV assignment A, as follows:

(0) We first initialize the folded state F'(A) by a segment
[0, 1].

(1) We then add the last line segment at the last crease
i such that As(i) = R, where R is M or V specified by
the ith assignment in A.

(2) We put the last line segment in the interval [0, 1].
The height of the last segment is chosen at random from
the feasible positions. Go to step (1) if the length of the
paper strip is not exhausted.

Intuitively, we fold the last line segment according to
A and put it in one of the feasible places at random
in the current (partial) folded state. In the last step
(2), we have to check the nest structure of the current
folded paper strip to find the feasible positions. Using
the technique in [4, Sect. 3.2.3], it can be done in linear
time. Thus our algorithm for key generation runs in
O(n?) time, where n + 1 is the length of the paper strip
P.

The folded state F'(A) of P can be represented by
the corresponding permutation p,. Because n! ~
V2mn(n/e)™ by the Stirling Formula, p, requires
O(nlogn) bits in a binary string.

Now, we turn to the generation of the public key.
From the permutation p,, we can generate the CW as-
signment C(A4) = (c¢1,¢2,...,¢,), where ¢; is an inte-
ger in [0,n — 1]. We then randomly replace some of
these integers by * and obtain a sequence C*(A) =
(cf,¢5,...,c), where ¢ is an integer in [0,n — 1] or
a symbol *.*

Then, we make a pair (A,C*(A)) the public key of
this user. We note that A is a binary number of n
bits that is fixed for each user and that C*(A) will
be used once and then thrown away. It is easy to see
that C*(A) can be encoded by a binary string of length
O(nlogn). (Because the number of ways of folding is
©(3.3"), which is much less than n!, we can theoretically
reduce it to O(n) bits.) We will use the CW assignment
C(A) as the signature key.

That is, for an MV assignment A, the corresponding
public key is (A, C*(A)), where C*(A) is partial infor-
mation about the CW assignment C'(A) of a folded state
F(A) for A. By Theorem 1, reconstruction of the folded
state F'(A) (and thus C'(A)) from (A4, C*(A)) is strongly
NP-complete in general.

4.2 Signature protocol

We suppose Alice is sending a message T to Bob. Let
(A, C*(A)) be the public key of Alice, which Bob knows.
Alice first gives notice of sending a message to Bob, and

4This random part is crucial for the security in this system.
The details are discussed in Concluding Remarks.

then updates C(A) by C’(A) (to prevent spoofing by
Bob). Then, Alice sends the message (T,C(A)). Bob
can confirm the reliability of the message T by check-
ing C*(A), which is partial information about C(A) be-
cause it is NP-complete to restore C(A) from C*(A) by
Theorem 1. Once Bob has received and confirmed the
message T, the C'(A) is discarded.

4.3 Discussions

For a given random MV assignment A, the expected
number of folded states F(A) (and thus C(A)) is
Q(1.53™). Therefore, each user has exponentially many
candidates for C(A). We also note that no pair of
distinct MV assignments A and B produces the same
folded state F(A) = F(B); the same is true for CW
assignments. Therefore, we never have C(A) = C(B)
unless they share the same ID.

By Corollary 2, we can use the same system even if
we remove A from the public key (A,C*(A)). In this
case, the public key is just C*(A), and only Bob can
know that Alice is the person who has the public key
C*(A), which is made from C(A). This system can be
used for some kinds of anonymous communication.

5 Concluding Remarks

In this study, we introduce the crease-restore problem
and investigate its computational complexity. As inves-
tigated in [5], an MV assignment is not sufficient for de-
termining the folded state of a strip of a paper. On the
other hand, an MV assignment and a CW assignment
are sufficient for determining the folded state. When we
provide partial information on the CW assignment, the
decision problem is NP-complete, whether we provide a
full MV assignment or provide no MV assignment. One
interesting open question is whether we can determine
the folded state of a strip of paper when only a (full)
CW assignment is given.

From the viewpoint of the proposed digital signa-
ture system, some specific MV assignment A has a few
folded states, although there exists at least one folded
state F'(A). It is known that A is a pleat folding (i.e.,
MVMV .-« or VMVMYV --.)if and only if A has only
one folded state. The characterization of the number of
folded states for a given MV assignment remains open
in the context of the stamp-folding problem.

In our framework, for a given CW assignment C(A) =
(¢1,¢2,...,¢n), which is a secret key, the method for
generating the public key C*(A4) = (cf,¢5,...,¢)) is
another problem that needs to be resolved. If we mask
a few numbers in C(A), it can be restored from C*(A)
by brute force. On the other hand, when we mask too
many numbers in C(A), we may have some risk that
C*(A) = C*(A’) for different MV assignments A and A’.
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Finding a reasonable method (based on experiments) for
masking C'(A) will be pursued in future research.
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