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Abstract 

Defects such as warping, which are introduced during additive manufacturing, severely compromise the 

quality of parts and could even damage the 3D printer. This paper proposes automated feature extraction 

and hyperparameter optimization in a closed-loop in-process system to monitor warping in fused filament 

fabrication (FFF). The feature extraction is based on G-code analysis, and map matching between the build 

platform and the captured image. This allows the warping detection algorithm to be applied to different 

camera angles, part locations, and corner geometries. Bayesian optimization is adopted to determine the 

best hyperparameters for the classification model. This model, based on a convolutional neural network 

(CNN), is executed in a Raspberry Pi pre-configured with OctoPrint, with plugins coordinating and 

controlling the camera, 3D printer, and microcomputer. Based on 16 tests carried out, the warping 

monitoring system was determined to be 99.2% accurate. 

Keywords: Convolutional Neural Network (CNN); Fused Filament Fabrication (FFF); Warping detection; 

Automated feature extraction; Bayesian optimization 
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1. Introduction 

Over the past two decades, additive manufacturing (AM) has emerged as an efficient and rapid 

manufacturing technique that offers numerous advantages over traditional manufacturing methods (Gardan 

2016; Frazier 2014; Zhang and Zhao 2021). Apart from rapid prototyping, the ability of AM to handle 

complex geometries has significantly increased its application in diverse industries, ranging from those 

manufacturing sports and leisure products to critical components in the aerospace industries. Low wastage, 

diverse feedstock materials, and a convenient manufacturing process are three key factors that led to the 

introduction of fused filament fabrication (FFF) as one of the most widely used AM processes in many 

application sectors (Popescu et al. 2018; Rahimizadeh et al. 2019). It uses thermoplastic filament extrusion 

through a nozzle to fabricate a component via a layer-upon-layer method known as 3D printing. 

Despite their reliability, components manufactured using FFF often exhibit defects that adversely impact 

their functionality and performance, thereby leading to significant wastage of material and time. Although 

it would be advantageous to monitor the fabrication process consistently to detect defective parts, the 

inherent vulnerabilities of 3D printing could cause the defect detection process to become inaccurate and 

expensive. This could result in an enormous difference between the properties of as-manufactured and as-

designed parts (Wu et al. 2016). Furthermore, monitoring the build process is generally integrated with 

high-speed scanners and analysis, which can be expensive, complicated, and time-consuming (Gobert et al. 

2018). Other typical methods pursued to perform quality checks at critical stages of the 3D printing process 

include techniques that involve a multi-camera system. They enable image processing to inspect the final 

fabricated product and perform a pixel-by-pixel comparison with the target object image. For instance, Yi 

et al. (2017) used a statistical approach to extract cutouts of images obtained from single layers of a 3D 

printed part to inspect defects. This machine vision method can accurately detect geometrical deviations 

greater than 0.5 mm from its original design with low computational complexity. However, it becomes 

ineffective when varying cross-sections and various light conditions are concerned. Rao et al. (2016) 

deployed a FaroArm laser scanner above the build platform to acquire the point clouds of the parts. They 

utilized spectral graph theory to construct a dimensional integrity classification tool to classify FFF printed 

parts of different qualities with high statistical significance (p-value < 0.01). Arguably, dimensional 

deviation monitoring with a 3D scanner and geometric approximation can achieve high accuracy and avoid 

image quality challenges. Nevertheless, a camera as monitoring equipment for FFF has gained widespread 

popularity (Kim et al. 2020). For instance, OctoPrint is a popular web interface with a camera interface to 

allow real-time monitoring for FFF 3D printers (Rankin 2015). Therefore, image analysis systems can be 

more easily integrated into existing 3D printing environments without significant cost and effort. 

Additionally, geometric approximation cannot fulfill high flexibility and intelligence requirements to 

perform defect detection for FFF 3D printing across various standards and industries. Instead, machine 

learning (ML) algorithms can improve through data accumulation and flexibly adapt to different production 

environments and standards.  

The many strategies that have lately been developed to overcome manufacturing defect detection problems 

mainly entail applying ML algorithms (Çaydaş and Ekici 2012; Salahshoor, Kordestani, and Khoshro 2010; 

Ribeiro 2005; Wuest et al. 2016; Zhang et al. 2019). The ability of ML to process a large quantity of data 

that contain the least amount of sparse knowledge has resulted in it being employed as one of the most 

commonly used techniques in different manufacturing applications, namely defect detection. Additionally, 

ML allows the 3D printing process to be monitored in real-time, a capability that could be exploited to 



correct defects during the fabrication process. Delli and Chang (2018) used an algorithm based on a support 

vector machine to classify 3D printed parts as either defective or defect-free based on criteria at particular 

checkpoints. In this investigation, images of the fabricated parts were taken at different stages throughout 

the process to obtain training data and define the ideal print job. Wu et al. (2016) resorted to ML and image 

classification to identify malicious infill defects in 3D printed parts. Images of defective and non-defective 

parts were used as input for a naïve Bayes classifier and J48 decision tree algorithms, for which, 

respectively, the accuracy reached 85.26% and 95.51% for predicting unseen data. The realization of ML 

methods can also be extended to other AM techniques to address the defect detection problem. For example, 

a supervised ML method was developed and implemented to detect defects in a powder bed fusion process 

(Gobert et al. 2018). The technique obtained 3D CT scans from parts featuring distinctive flaws, e.g., cracks, 

porosities, and inclusions. Then, the actual location of the defects was transferred into a layer-wise image 

domain using an affine transformation. Once the binary classifiers were appropriately trained by way of 

layer-wise imaging, in-situ defect detection of which the accuracy exceeded 80% was reported for cross-

validation experiments. The accurate recognition of image features via conventional ML involves a tight 

intertwinement between effective features learning and feature vector extraction. Despite benefiting from 

statistical classifiers to locate different features in an image, the performance of ML algorithms is highly 

sensitive to the features selected by the user. Deep learning algorithms employ artificial neural networks 

(ANN) structures with large depth, automatically extracting representative features that better characterize 

the target subject from images (Bengio, Goodfellow, and Courville 2017). Haghighi and Li (2020) built a 

vision-based filament bonding condition monitoring pipeline that is more than 94% accurate on average. 

They constructed an ANN model that predicts the geometric deviation of layer thickness based on variables 

extracted from build parameters and images to support this pipeline. This model learned from 270 images 

and reached 90.6% and 90.3% R-squared values for the validation and test sets, respectively. Convolutional 

neural network (CNN) adopts similar structures as ANN and utilized parameter sharing to account for 

sequential relationships among data points (Bengio, Goodfellow, and Courville 2017). Compared with other 

ML algorithms, CNN has gained unparalleled popularity in image analysis due to the ability to explore the 

spatial relationships among pixels (Wang et al. 2018). In research work by Park et al. (2016), a CNN was 

successfully deployed to inspect surface defects and irregularities of parts manufactured using various 

techniques. The accuracy for predicting the features of samples that were not included in the set of training 

samples was 98%. Khan et al. (2021) built a CNN model to classify FFF printed parts with and without 

defects. A digital camera was mounted on the top of a RAISE3D printer to capture 1695 top view images 

of the parts. This model achieved an accuracy of 84% after 50 epochs, but both the test accuracy and test 

loss curves fluctuated significantly, highlighting stability and reproducibility problems. Jin et al. (2021) 

implemented a semantic segmentation model to locate defect sections of FFF 3D printed parts using the 

you only look once (YOLO) algorithm based on deep CNN. A total of 1400 images captured by a camera 

mounted on the extruder were labeled with “good quality,” “over-extrusion,” and “under-extrusion” to train 

this vision-based defect detection model. This model can simultaneously highlight regions with over-

extrusion and under-extrusion on an image and reach an accuracy of 93.9%.  

 

Warping is a typical defect in FFF 3D printed parts, where the residual thermal stresses within a part cause 

distortion. Many studies have exploited different approaches to analyze and detect warping in 3D printed 

parts. Most of these schemes are associated with computational and accuracy limitations, but a recent study 

by Saluja, Xie, and Fayazbakhsh (2020) led to the development of a closed-loop in-process method to detect 

warping during 3D printing using a CNN classification model. The proposed system enables in-process 



detection such that once warp distortion is detected, the printing process is aborted. Despite its advantages, 

image cropping and the selection of hyperparameters were performed manually, which decreased the 

system's efficiency in terms of the time and computational complexity and limited its practicality.  

 

None of the vision-based autonomous in-process defect detection systems applied to FFF AM to date has 

been developed with efficient automatic feature extraction. The algorithm developed by Delli and Chang 

(2018), based on a support vector machine, accepts the entire top view of the part as the input. Straub (2015) 

designed a quality assessment system that captured and analyzed images of the entire printing process with 

cameras at different angles. Liu et al. (2019) used a camera to capture images of FFF 3D printed parts. They 

used these images for textural analysis after manually cropping the region of interest. Baumann and Roller 

(2016) attached six optical markers to the 3D printer and cropped the area enclosed by them, which helped 

reduce the background noise and lower the computational burden. They also tried to extract the object's 

contour based on the hue-saturation-value (HSV) color model, but their approach does not support defect 

detections with high accuracy. Holzmond and Li (2017) developed a three-dimensional digital image 

correlation (3D-DIC) system that captured the image of a 3D printed part with two cameras and transferred 

the images to a point cloud that can be compared with the computer-aided design (CAD) model. This 

involved extracting features from the original images, which were then converted into a data type that a 

computer can process. However, the intensive data transformation and simulation were computationally 

inefficient and challenging to use in real-time. Bisheh, Chang, and Lei (2021) used ML algorithms to 

segregate pixels of the part from the background, including ANN, support vector machine (SVM), and 

gradient boosting classifier. Although NN and GBC models are above 90% accurate, the prediction result 

cannot support precise geometric deviation detection. 

 

ML models contain two types of parameters: hyperparameters and model parameters. Hyperparameters are 

specified by the user before training and are not learned by the models. Because the performance of the 

CNN classification model changes considerably with the data type and size, an automated approach is 

required to select hyperparameters to improve the practicality of the system. Several strategies have been 

proposed for optimizing the hyperparameter search space (Feurer and Hutter 2019; Wu et al. 2019; Hinz et 

al. 2018; Murugan 2017). A common optimization algorithm is the grid search method. This method 

involves training a model over a range of manually selected sub-set of hyperparameters; the values that 

give the best performance on the validation dataset are chosen. While easier to code, this method is time-

consuming, ineffective, and often suffers from the curse of dimensionality. An alternative to this strategy 

is the random search method, where the hyperparameter search space is randomly sampled. Like the 

previous method, random search is often time-consuming when dealing with many hyperparameters in the 

search space. Although an improvement to manual tuning, Grid and random search algorithms are 

inefficient as they are uninformed by past evaluations; in contrast, a Bayesian-based optimizer keeps track 

of past evaluations to form a surrogate model. This surrogate model is then used to find the next set of 

hyperparameters by evaluating the results from the previous iteration. To the best of the author's knowledge, 

despite being an efficient technique, Bayesian optimization has not been explored extensively to develop 

AM defect detection architecture. 

 

This paper first describes the proposed automated feature extraction and data collection system, which uses 

the correlation between the build platform and captured images. Then, the use of Bayesian optimization for 

the automated selection of hyperparameters for the CNN classification model is explained. Subsequently, 



the system pipeline constructed by OctoPrint plugins is presented. Finally, the real-time printing 

experiments are discussed to investigate the accuracy of the closed-loop warping monitoring system by 

considering different camera angles, corner positions, and corner geometries. 

 

2. Methodology 

This section first presents the experimental setup and the information flow of the closed-loop monitoring 

system. Then, the automated techniques to achieve feature extraction and hyperparameter optimization are 

introduced. Finally, the logic that guides the OctoPrint plugins to form a closed-loop system for warping 

monitoring is revealed. 

 

2.1. Experimental Setup 

Figure 1 shows the experimental setup of the system for warping monitoring. A Prusa i3 MK2S FFF 3D 

printer was selected because it represents a wide range of FFF 3D printers with a build platform moving in 

the Y-direction and an extruder moving in the X- and Z-directions. The monitoring system developed for 

this printer can be used in conjunction with many other FFF 3D printers. A Raspberry Pi 3 Model B pre-

configured with OctoPi is connected to the printer and the camera by two USB cables. It has a Quad-Core 

ARMv8 processor with 1GB RAM and runs on Linux, and has sufficient computational power for the 

classification model, G-code analysis, and feature extraction. The training and testing images were captured 

from sample specimens printed with white and gray polylactic acid (PLA) filaments in the experiments. 

The reflection effect was mitigated by using blue or green non-reflective painter’s tape.  

 
Figure 1. Experimental setup of the closed-loop in-process system for warping monitoring. 

 

2.2. OctoPrint interface 

OctoPrint is an open-source web server and an interface for 3D printing written in Python. This interface 

allows users to download and create plugins to add more functionality and customize the printing 

operations. Figure 2 illustrates the flow of information between the components of the closed-loop system 

by depicting the general procedures. The computer first uploads a G-code script to the OctoPrint server. 

Then, the Raspberry Pi downloads the G-code script via wireless connection and analyzes it with the 

OctoPrint plugins. In short, the plugins of the system automatically locate the layer changes, retrieve the 

real-time position of the corner from the G-codes, and then pause the printing process for 4 seconds. 



Controlled by the plugins into which gphoto libraries were imported, the camera captures an image when 

the printer pauses and stores it in the Raspberry Pi. Gphoto is a group of software applications that supports 

remote image capture and camera configuration adjustment. 

 

 
Figure 2. Flow chart of the closed-loop warping detection procedures. 

 

To reduce the computational cost, the image needs to be cropped such that only the corner remains. The 

cropped image is then used as input for the CNN classification model. Based on the classification result, 

the OctoPrint plugins decide to either continue or terminate the print, thereby completing the closed-loop 

system.  

2.3. Automated feature extraction system 

A Sony A5100 camera is placed in front of the 3D printer and at the same height as the build platform to 

capture an image of the side view of a part. The blue region in Figure 3a indicates the area covered when 

the build platform (250 mm×210 mm) moves from the front-most to the rearmost location along the Y-axis. 

The orange zone is the region of interest (ROI), where the left corner of the part exists during experiments 

based on manual inspection of the G-codes. The data collection and correlation process description, 

presented in Section 2.3.1, focuses on the ROI. In the experiments, the real-time image analysis is primarily 

performed on the printed part's left corner. To simulate imperfect setup in a production environment, the 

camera is placed at orientation A, perpendicular to the X-axis, and B, at an angle of 75° with respect to the 

X-axis. Figure 3b shows the coordinate system of the build platform and certain variables that are utilized 

to locate the real-time position of the left corner. Further, xcor is the distance between the left corner of the 

part and the left edge of the build platform, and ycor is the distance between the left corner of the part and 

the front edge of the build platform; ybed is the distance between the X-axis and the front edge of the build 

platform; xcor, ycor, and ybed are acquired from the G-codes to analyze the position of the left corner of the 

part relative to the origin, indicated by the vector, (xcorner, ycorner). 

 

To capture clear images of the corners within the ROI, the F-number of the camera needs to be increased 

to obtain the largest depth of field such that the camera remains focused over a wide area of the build 

platform. Because the brightness is reduced due to less light passing through the lens, an LED lamp is 

deployed right above the camera to increase the light intensity. The F-number and mounting angle of the 

LED lamp were carefully adjusted to enable clear images of the corners within the ROI to be captured with 

no significant flare. The optimal F-number and lamp angle are F18 and 70 degrees, respectively.  

 



  
(a) (b) 

Figure 3. Build platform coordinate system: (a) region of interest (ROI); and (b) definition of the corner 

position in the build platform coordinate system. 

 

Figure 4 shows the coordinate system of a captured image, and the desired region to be cropped and used 

as input into the classification model. The red box indicates the corner to be analyzed, and the feature 

extraction system generates the cropped image. The feature extraction tool is a correlation system that 

correlates the corner position in the image coordinate system, x’image, with its position in the build platform 

coordinate system, xcorner and ycorner. When the camera is placed at the same height as the build platform, the 

variation in the vertical position of the part corner on the image (y’image) can be assumed to be insignificant; 

therefore, it can be considered a constant number. 

                              
Figure 4. Image captured by the camera and the desired region to be cropped. 

 

Analysis of the G-code commands allows the location of the corner in the build platform coordinate system 

(xcorner and ycorner) to be obtained. The location of the corner in the image coordinate system (x’image and 

y’image) is required to crop the image. The purpose of the correlation is to estimate the location of the corner 

on the image using its location on the build platform. Therefore, map matching is performed between the 

two coordinate systems. 

 

2.3.1. Automated data collection 



Two 3D printed parts were created to aid the development of the automated map-matching process between 

the two coordinate systems (Figure 5). The upper part, which contains a rectangular notch, is mounted on 

the extruder block using the circular hole. The lower part, which is mobile and is placed on the build 

platform, has a rectangular block on top that can slide into the upper part and a triangular platform pointing 

in the direction of the extruder. The tip of the triangular platform, to which a red marker is attached, is 

positioned directly beneath the extruder head, and represents the location of the reference point. The 

triangular platform has a lower height than the block to leave sufficient clearance between the extruder head 

and the part. When the rectangular block of the lower part slides into the notch in the upper part, the lower 

part moves with the extruder, and when they are detached, the lower part moves with the build platform. A 

G-code script is prepared to guide the lower part to each reference point automatically. The OctoPrint 

plugins autonomously capture an image when the lower block arrives at each point. After the data collection 

process, the two parts are detached from the 3D printer. 

 

   
(a) (b) (c) 

Figure 5. Tools aiding automatic correlation: (a) CAD models; the two parts (b) detached from and (c) 

attached to each other. 

 

Color recognition technology is used to determine the location of the red marker. The Red-Green-Blue 

(RGB) color model is utilized to define the threshold for “red” (Table 1). The original image that was 

captured, shown in Figure 6a, is filtered using a color mask such that only the pixels with an RGB color 

difference between the upper and lower bounds are retained. As shown in Figure 6b, the pixels of the red 

marker are kept along with a red stripe at the top, which is the red wire from the 3D printing head. The red 

pixel represents the corner position on the image with a known location on the build platform (xcorner and 

ycorner). Its horizontal location on the image, x’image, is defined by the horizontal location of that pixel. The 

procedure described above can be repeated for the 112 reference points on the build platform and the 

correlation between the two systems can be obtained.  

 

Table 1. Thresholds defined by setting upper and lower bounds for red. 

 R G B 

Lower bound 17 15 100 

Upper bound 50 56 200 

 



 

(a) (b) 

Figure 6. Red marker used to define the position of the reference point on the image: (a) original image; 

and (b) image acquired using the color mask for red. 

 

As shown in Figure 7a, 112 reference points are created within the ROI. The reference points are equally 

spaced except for two rows inserted at ycorner=0 and ycorner=120, and one column added at xcorner=50. These 

three lines of reference points marked with yellow dots are not used to create the interpolation model; 

instead, they are treated as testing points to validate the correlation. Figures 7b and c show the position of 

the reference points in camera views of 75° and 90°, respectively, where the x’image value of each reference 

point is correlated to a pair of xcorner and ycorner. They indicate that the images are skewed in the camera view 

due to the lens's radial distortion. The relation between the position of any point within the ROI and its 

location on the image can be determined using interpolation. Because the images are distorted, linear 

interpolation cannot be used, and spline interpolation is chosen. 

 
                               (a) (b)                 (c) 

Figure 7. Actual and distorted positions of the reference points: (a) actual reference points; reference 

points viewed by the camera at (b) 75˚ and (c) 90˚. 

 

2.3.2. Bivariate Spline Interpolation 

Spline interpolation is a numerical approximation method that uses a piecewise polynomial named spline. 

Taking three points A(xi-1, yi-1), B(xi, yi), and C(xi+1, yi+1), where xi-1< xi< xi+1, two polynomial curves, 



described by functions L1 and L2, were created to connect them smoothly. Point B is the intercept of L1 and 

L2.   

𝐿1(𝑥𝑖−1) = 𝑦𝑖−1                                                                                (1) 

𝐿1(𝑥𝑖) = 𝑦𝑖                                                                                     (2) 

𝐿2(𝑥𝑖) = 𝑦𝑖                                                                                     (3) 

𝐿2(𝑥𝑖+1) = 𝑦𝑖+1                                                                                (4) 
The classical approach involves the use of a cubic spline (Ahlberg, Nilson, and Walsh 1967), which should 

be smooth at the joint such that the two curves have the same slope and concavity at point B: 

𝐿1
′ (𝑥𝑖) = 𝐿2

′ (𝑥𝑖)        (5) 

𝐿1
′′(𝑥𝑖) = 𝐿2

′′(𝑥𝑖)        (6) 
It is necessary to assume boundary conditions to solve the equations of the two curves. Natural spline 

boundary conditions are commonly adopted to generate a natural and smooth interpolation, where the 

second derivative of the two ends A and B are equal to zero: 

𝐿1
′′(𝑥𝑖−1) = 0                     (7) 

𝐿2
′′(𝑥𝑖+1) = 0                     (8) 

Thus, two cubic polynomial curves can be acquired to form a univariate spline. In this correlation, two input 

variables, xcorner and ycorner, are used. To obtain an interpolation result with two variables, a smoothing 

bivariate spline approximation tool from SciPy is introduced to the correlation procedure. SciPy is an open-

source software tool written in Python to solve various mathematical problems. Additionally, the degree of 

the bivariate smoothing spline was set to 3 (cubic spline for both variables) in the experiments. 

The x’image positions of the testing points are compared with the interpolated results to validate the 

interpolation result. The mean absolute error (MAE) is used in the validation, where a small MAE value 

indicates an accurate interpolation model.  

   

𝑀𝐴𝐸 =
1

𝑛
∑ (|𝑥𝑖𝑚𝑎𝑔𝑒,𝑗

′ − 𝑥𝑖𝑚𝑎𝑔𝑒,𝑗
′ |)𝑛

𝑗=1  ,                 (9) 

where n is the number of testing points (n=28), 𝑥𝑖𝑚𝑎𝑔𝑒
′  is the dataset containing the real coordinates of the 

testing points, and 𝑥𝑖𝑚𝑎𝑔𝑒
′  is the dataset containing the imputed coordinates of the testing points with 

bivariate spline interpolation. MAE is a statistical measure that indicates the error between the observed 

and predicted values. In the correlation, this value physically represents the average difference in pixels 

between the observed and interpolated values of x’image of the testing points. 

 

2.4. Automated CNN construction 

This section compares the automated approach, based on the construction of a CNN, with the manual 

approach the authors previously reported (Saluja, Xie, and Fayazbakhsh 2020). The input dataset, 

hyperparameter optimization, and optimized CNN architecture are described. 

 

2.4.1. Dataset Preparation 

Fifty-two 30 mm ×15mm × 5mm cuboids were printed (individually) and recorded layer-by-layer to 

collect images of unwarped corners. The corners of these cuboids were then peeled from the build platform 

to imitate warp deformation. CNN models are sensitive to the quality of input images. For example, features 

are less prominent in darker images and can have an adverse effect on classification accuracy. This can be 

addressed by training the underlying model with images captured under different ambient lighting 

conditions. The dataset proposed for this study consisted of 550 color images (6000 × 4000 pixel) divided 

(equally) between two classes, warped and unwarped. In each class, the first half contained images taken 



in an ideal environment, i.e., the lighting conditions were closely monitored to ensure clear images. The 

other half consisted of images captured by altering the ambient conditions (including the lighting conditions 

and camera positions) to obtain grainy images. 

Training a classification algorithm with this dataset would require optimizing 3.96 × 1010 nodes (550 × 

6000 × 4000 × 3), a computationally expensive process. To improve the computational efficiency, the 

region containing the corner (Figure 8) was extracted using the feature extraction method described in 

Section 2.3. The figures were converted to grayscale and resized to 100 × 100 pixels by performing nearest-

neighbor interpolation. The processed dataset was then shuffled and split into training and validation sets 

in the ratio 80/10, and the remaining 10% was used for testing. Figure 8 shows three training samples for 

each class from both datasets under different ambient lighting conditions. 

 

 

 

 

   

 

(a) 

   

 

(b) 

   

 

(c) 

   

 

(d) 

Figure 8. Samples from the training set: unwarped samples taken (a) in an ideal lighting 

environment, (b) under varying lighting conditions; warped samples taken (c) in an ideal 

lighting environment, (d) under varying lighting conditions.  

 

2.4.2. Automated Hyperparameter Optimization 

A CNN can typically be constructed manually or autonomously. Although easier to code, the former 

necessitates a trial-and-error approach and is often time-consuming and inaccurate. In contrast, an 

automated approach is suitable for an agile manufacturing environment; however, it is computationally 

expensive and requires a good understanding of black-box optimization techniques. The manual approach 

was covered extensively by Saluja, Xie, and Fayazbakhsh (2020). Since then, a Bayesian-based 

probabilistic model was developed to automate optimizing the hyperparameters for the underlying CNN 

classification model. Figure 9 outlines the high-level algorithm utilized to optimize the hyperparameter 

values. 



 
Figure 9. Simplified representation of the algorithm underlying the automated approach. 

 

The algorithm divides the dataset into training and validation sets and then repeats an optimization loop 

until a certain threshold is met. Hyperparameters are selected from a search space defined by the user during 

each iterative cycle. The search space contains the total number of convolutional and pooling layers 

(including the kernel size and stride length), the number feature maps, the neurons and activation function 

for each layer, and the optimal dropout and learning rate. The intermediate classification model is then 

created and trained on the training set using the selected hyperparameters. This model is evaluated on the 

validation set wherein the validation accuracy was stored after each iterative cycle to estimate the values of 

hyperparameters for the subsequent iteration. The intermediate classification model and its validation 

accuracy are stored in an array. The best model is then selected and retrained on additional epochs to 

improve the validation accuracy. The number of epochs is limited by implementing early termination to 

prevent the model from training once the specified threshold for validation accuracy is reached.  

The manual approach implemented by Saluja, Xie, and Fayazbakhsh (2020) performed well, yielding a 

mean validation and training accuracy of 0.98; however, it took more than three hours to optimize and train 

the model. In contrast, the automated approach constructed and retrained the model with additional epochs 

in less than 15 minutes. The architecture of the optimized CNN classification model is presented in Table 

2. 

 

Table 2. Serialized architecture of the underlying CNN classification model 

Layer Operator Kernel Size Stride Number of 

Filters/Nodes/% 

Method/Activation 

LY1 – C1 Convolution 2 × 2 2 18 ReLU 

LY2 – P1 Pooling 2 × 2 2 18 Max Pooling 

LY3 – C2 Convolution 2 × 2 2 14 ReLU 



LY4 – C3 Convolution 2 × 2 2 26 ReLU 

LY5 – C4 Convolution 2 × 2 2 16 ReLU 

LY6 – F1 Fully Connected  Flattened to a Vector 

LY7 – 

DP1 

Dropout  80% of Nodes Retained 

LY8 – 

FC2 

Fully Connected - - 2 SoftMax 

 

 

2.5. OctoPrint Plugins 

OctoPrint plugins are the skeleton of the system and are responsible for multiple tasks, such as G-code 

analysis, feature extraction, and the CNN classification model. (Figure 10). The G-code script of a part is 

downloaded to the Raspberry Pi 3 once the user activates the print job on the OctoPrint website. The G-

codes are first queued in the Raspberry Pi before they are sent to the printer to guide the movements of the 

extruder and the build platform. The 3D printer receives five G-code commands from the Raspberry Pi at 

each turn and requests another five commands when the previous commands are being executed. The 

OctoPrint plugins allow the G-code commands that are in the queue to be edited. G-code commands can 

help locate the coordinate of the left corner of the part (xcorner, ycorner) in the build platform coordinate system 

during the printing process. Commands “G0” and “G1” are rapid and controlled motions, respectively. “X” 

and “Y” usually follow these two commands to indicate where the extruder should move on the build 

platform. For example, the command in Eq. 10 mandates the extruder to rapidly move to the point on the 

build platform where it is 20 mm and 40 mm away from the left and front edges, respectively.  

𝐺0 𝑋20 𝑌40                                                                    (10) 

The left corner of the part on the build platform (xcor and ycor shown in Figure 3b) can be located by analyzing 

the G-codes with OctoPrint plugins to find the track of the extruder, shown in Algorithm 1. 

 

Algorithm 1: Pseudocode to find xcor and ycor to locate the position of the left corner of the part on the build 

platform. 

Input: G-code commands in sequential order 

FOR each command in G-code queue 

 IF contains ‘G0’ OR contains “G1” THEN 

  append numbers following X and Y to arrays xcoordinate and ycoordinate, respectively 

 END IF 

END FOR 

xcor, minIndex = min(xcoordinate) 

ycor = min(ycoordinate[minIndex]) 

return (xcor, ycor) 

 

This way, the system can detect the corner coordinate of multiple geometries such as rectangular, rounded, 

and triangular corners. Additionally, the position of the build platform must be acquired to find the real-

time location of the corner when an image is captured. G-code command can also provide the real-time 

position of the build platform, ybed. Once a layer change is detected, the plugins insert a pause command 

(G4) to pause the print before the layer change. While the printer is paused, the location of the build platform 

ybed is retrieved from the G-codes and used to compute the real-time coordinate of the corner. The input to 

the correlation (Section 2.3.1) can be obtained as: 

xcorner = xcor                                                                         (11) 



ycorner = ycor - ybed                                                                (12) 

Then, the plugins send a command to the camera to capture an image when the printer pauses. Based on 

xcorner and ycorner, the correlation model provides x’image, allowing the algorithm to locate and crop the image. 

The cropped image only contains the important features, which is the corner here. Afterward, the cropped 

image is sent to the CNN classification model for image analysis, and the output is the probability of an 

unwarped corner. A threshold of 0.3 is chosen, which means if the result is less than 0.3, the corner is 

considered a warped corner. The threshold was set to 0.3 instead of 0.5 because analysis of the classification 

results of the training and validating dataset indicated that a warped corner usually has a result of less than 

0.01. Therefore, the threshold was adjusted to a value smaller than 0.5. The Raspberry Pi either continues 

or aborts the print depending on the classification result. 

 

Figure 10. The pipeline of the OctoPrint plugins. 

 

3. Results and Discussion 

This section presents the correlation results of the coordinates of the image-build platform, hyperparameter 

optimization, and the closed-loop in-process system for warping monitoring. 

3.1. Correlation Results 

Figure 11 shows the correlation surface between the position of any point (xcorner and ycorner) and its location 

in the image (x’image) for camera views of 75° and 90°. The figure also includes the original reference points 

used for the creation and testing of the bivariate spline interpolation. As discussed in Section 2.3.2, the 

mean absolute error was used to evaluate the accuracy of the interpolation results. The MAEs for the testing 

points (yellow dots) were 0.65 and 0.59 for camera views of 90° and 75°, respectively. The MAE values 

show that the average difference in pixels between the actual values and the correlation results for the testing 

points is acceptable. The cropped image of 100×100 pixels successfully retains the important features of 

the corner of the parts with these small shifts from the center. Therefore, the correlation surface can estimate 



the location of any point on the build platform in the image captured by the camera. This information is 

used to automatically crop images captured during a part 3D printing to retain only the corner of the part. 

 

  
(a) (b) 

Figure 11. Correlation surfaces and scatter plots of original reference points: (a) 90° and (b) 75°. 

 

3.2. Closed-loop System for Warping Monitoring 

As discussed in Sections 2.1 and 2.2, the closed-loop in-process system for warping monitoring employs 

CNNs for automated feature extraction and hyperparameter optimization. The test started with rectangular 

specimens with a length of 80 mm, a width of 8 mm, and a height of 3 mm. The manufacturing and design 

parameters are listed in Table 3. 

 

Table 3. 3D printing process parameters for the tests. 

Manufacturing parameter Value Manufacturing parameter Value 

Print direction XYZ Nozzle diameter (mm) 0.4 

Material  PLA Nozzle temperature (°C) 200 

Raster angle 0 Cooling No fan cooling 

Layer height (mm) 0.15 Infill (%) 30 

Bed temperature (°C) 60 Filament diameter (mm) 1.75 

Print speed (mm/min) 2400 Number of layers 20 

 

The system first allows the print to be built up to approximately 1 mm. Upon completing the sixth layer, 

the first image is captured and analyzed. Based on the result from the classification model, the OctoPrint 

plugins either continue (Probability, P(X = unwarped corner) ≥ 0.3) or stop (P(X = unwarped corner) < 0.3) 

the printing process. A test was conducted by positioning a rectangular specimen at the top left of the build 

platform. A camera angle of 75° was selected to demonstrate the system's effectiveness. The results are 

summarized in Table 4 with the accompanying plots in Figure 12. The first 13 layers that were analyzed 

(layer #6 to #18) were classified as corners without warpage because the results were greater than 0.3. The 

19th layer resulted in 0.000324; thus, it was categorized as a warped corner.  



Table 4. Warping detection results for a specimen printed in the top left corner of the build platform and a 

camera angle of 75°. 

 

Automated Approach 

Layer # P (X = unwarped corner) 

6 0.689 

7 0.525 

8 0.892 

9 0.765 

10 0.814 

11 0.803 

12 0.732 

13 0.665 

14 0.844 

15 0.753 

16 0.790 

17 0.709 

18 0.690 

19 0.000324 

 

The classification results in Table 4 correspond precisely with the actual print shown in Figure 12. Once 

the warpage was detected, the Raspberry Pi aborted the print. This test demonstrated that the closed-loop 

system for warping monitoring operates as intended. 

 

 
Figure 12. Cropped images of up-left position and camera at 75 degrees from layer #6 to #19. 

 

To evaluate the accuracy of the system, sixteen tests were performed that included different camera views, 

part corners placed at various locations on the build platform, and corners with different geometries. 

Initially, the camera was set perpendicular to the X-axis (orientation A). The rectangular specimens were 

printed in different locations on the build platform (Figure 13a): upper left, center, and lower right. The 3D 

printing was repeated for each location, yielding six specimens. Then, the camera was placed at 75° with 

respect to the X-axis (orientation B) and another six rectangular specimens were printed. Finally, the camera 

was restored to orientation A to investigate the impact of different corner geometries on the accuracy of the 



system. Rectangular specimens with rounded corners with a radius of 4 mm and sharp corners with a height 

of 15 mm were investigated (Figure 13b).  

 

 

(a) (b) 

Figure 13. Specimens for testing the system for warping monitoring: (a) different specimen positions; and 

(b) different corner geometries. 

 

A total of 16 specimens were printed, and 128 images were captured, cropped, and analyzed by the closed-

loop system for warping monitoring (Table 5). Altogether 127 images were correctly classified, resulting 

in an accuracy of 99.2%. In addition, all the cropped images contained the specimen corners, indicating an 

image cropping success of 100%. The results also showed that the system worked effectively for both 

camera angles, all three positions, and all three corner geometries with high accuracy. The only image that 

was not correctly identified was that from Test 8 in which the corner warped in layer #6. However, the 

system did not recognize the warpage until layer #7 and the print was terminated at layer #7 instead of layer 

#6.  

 

To investigate the reasons behind the incorrectly classified image, all images of warped corners at the center 

of the build platform acquired from the experiments are shown in Figure 14. Figure 14(c) was incorrectly 

recognized as a corner without warping, while other images were correctly classified as warped corners. At 

the 6th layer of Test 8, the part has marginally detached from the build platform, with minimal shadow and 

curvature beneath the part. After one more layer has been deposited (Figure 14(d)), thermal stress further 

built up and pulled the part away from the build platform, resulting in the clearer and thicker shadow under 

the part. Similarly, other images in Figure 14 also present obvious curvature and shadow. According to 

Saluja, Xie, and Fayazbakhsh (2020), features such as curvature and shadow extracted by CNN filters are 

essential evidence of warping. Nonetheless, images characterizing marginal warping like Figure 14(c) are 

not present in the training set, where most warped corners are away from the build platform. Thus, Figure 

14(c) lands at a region where the training example is sparse and accurate prediction cannot be obtained with 

the current training set. 

 

 

 



   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 14. Images of warped corners at the center of the build platform: (a) Test 3 at layer #15; (b) Test 4 

at layer #8; (c) Test 8 at layer #6 (incorrectly classified); (d) Test 8 at layer #7; (e) Test 13 at layer #11; and 

(f) Test 14 at layer #10. 

 

Table 5. CNN classification results for the tests. 

 

As shown in Figure 12, the cropped images of the corners had a blurry appearance. This was attributed to 

the fact that the system captured an image of the corner at which the part being printed was paused, but the 

build platform was not delivered close to the camera, making an optimized focus distance unachievable. 

Nonetheless, the system was still highly accurate despite the blurriness of the input images. Compared with 

the original CNN classification model (Saluja, Xie, and Fayazbakhsh 2020), the current version of the 

model is shallower in that it contains eight hidden layers instead of 21. Hence, the automated approach 

utilizing Bayesian optimization reduces the time required to train the model from approximately 3 hours to 

15 minutes, and the in-process execution time per layer from 50 seconds to 20 seconds with Raspberry Pi 

Camera 

angle 

Specimen 

position 

Test 

number 

Total number of 

analyzed layers 

Number of 

unwarped layers 

Number of 

warped layers 

Layers correctly 

classified 

Corners 

correctly 

cropped 

90 degrees 

Downright 

1 11 10 1 11 11 

2 9 8 1 9 9 

Center 

3 10 9 1 10 10 

4 3 2 1 3 3 

Top-left 

5 13 13 0 13 13 

6 5 4 1 5 5 

Triangular 

corner 

7 14 14 0 14 14 

8 2 0 2 1 2 

Rounded 

corner 

9 11 10 1 11 11 

10 4 3 1 4 4 

75 degrees 

Downright 

11 5 4 1 5 5 

12 8 7 1 8 8 

Center 

13 6 5 1 6 6 

14 5 4 1 5 5 

Top-left 

15 14 13 1 14 14 

16 7 6 1 7 7 



3. Additionally, the number of feature maps in each layer was increased, allowing the model to learn several 

low-level features from the input image while retaining its computational efficiency. Furthermore, by 

downsampling the input image from 525 × 100 pixels to 100 × 100 pixels, the current version of the model 

was invariant to shift and distortion, as is evident from the results. Theoretically, deeper networks are more 

effective at abstracting features, resulting in a more comprehensive understanding of the input image. 

However, the redundant pooling layers and lack of kernels prevented the model developed by using the 

manual approach from learning low-level features, as indicated by the results. The new approach yielded a 

much shallower yet efficient model in less than 15 minutes, significantly reducing the time required to train 

the model and the in-process execution time.  

The initial assumption that yimage can be constant was valid as the corners were precisely cropped for all 

images with a constant value assigned to yimage. Using the camera for a high- or low-angle shot, in which 

case yimage cannot be treated as a constant, would enable the same correlation methodology described in 

Section 2.3 to be used to estimate its value. Moreover, this technique is not restricted to 3D printing and 

could be applied to other manufacturing processes. For example, the automated feature extraction system 

could be used in CNC machining to extract the important regions of an image using the proposed cropping 

technique since G-codes also run CNC machines.  

By detecting the warpage and stopping the manufacturing process, this real-time monitoring system can 

significantly reduce materials wastage, and prevent any damage to the nozzle and the 3D printing head. 

Although this system is precise, it still requires more enhancements to be implemented in a practical 

production environment. Currently deployed on a Raspberry Pi, the system might run into scalability issues 

when more defect detection features are added. 

3.3. Computational complexity analysis 

This section aims to illustrate the enhancements brought by Bayesian optimization to the computational 

efficiency of the FFF warping detection model. Compared with the model presented in Saluja, Xie, and 

Fayazbakhsh (2020), where the hyperparameters were determined by grid search, Bayesian optimization 

helps reduce both the hyperparameter optimization time and the time complexity of the model. The time 

complexities of the forward pass of the old and new CNN models are approximated and compared with 

another CNN model for geometric unconformity detection presented by Khan et al. (2021). Note that the 

shapes of the input images and kernels are squares that have equal length and width. According to He and 

Sun (2015), the time complexity of a convolutional layer is: 

𝑇𝑐𝑜𝑛𝑣 = 𝑂(𝑛𝑖𝑛𝑘2𝑛𝑜𝑢𝑡𝑚𝑜𝑢𝑡
2 ) ,      (13) 

where k is the width of the kernel, mout is the width of the output feature map, nin and nout are the numbers 

of channels of the input layer and output feature map. Both the time complexities of max pooling and ReLU 

activation can be approximated by: 

𝑇𝑝𝑜𝑜𝑙𝑖𝑛𝑔/𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑂(𝑛𝑜𝑢𝑡𝑚𝑜𝑢𝑡
2 )           (14) 

Freire et al. (2021) approximate the complexity of dense layers as: 

𝑇𝑑𝑒𝑛𝑠𝑒 = 𝑂(𝑙𝑖𝑛𝑙𝑜𝑢𝑡) ,             (15) 

where lin and lout are the numbers of neurons in the last and current layers, respectively. The representations 

above are simplified, but often provide satisfactory accuracy for comparison purposes. Table 6 compares 



the forward pass time complexities of reported algorithms that detect warping. Although the algorithm built 

by Khan et al. (2021) aims to classify the overall geometric conformity of a part without pointing out the 

defect types, it can also be utilized to detect warping. It can be observed that the new model with 

hyperparameter optimization substantially reduces the time complexity of CNN-based warping detection. 

Bayesian optimization helps construct the model that can achieve optimal accuracy with less depth and 

number of filters than the previous model. The model presented by Yi et al. (2017) evaluates geometric 

unconformity by performing a pixel-by-pixel comparison between the current print and a standard one. 

Petsiuk and Pearce (2020) proposed an open-source defect detection framework for FFF that utilizes both 

geometric approximation and machine learning algorithms to detect various defects. Although warping 

detection is not included in this framework, this function can be compared to its side view height validation 

algorithm. Arguably, a much smaller time complexity can be obtained with geometric approximation than 

CNN models. Nonetheless, CNNs are more flexible and intelligent to deal with numerous challenges 

concerning defect detection of additive manufacturing. For instance, varying light conditions seriously 

compromise the performance of image-based geometric approximation algorithms (Petsiuk and Pearce 

2020; Yi et al. 2017). The new CNN model has been developed with training examples captured under 

different lighting conditions to enable warping detection at different corner positions and camera angles. 

Further, the input image size has been reduced to n=100 such that the complexity difference between 

O(46n2) and O(n2) is not significant regarding modern GPU and CPU.  

 

Table 6. Comparison of the forward pass time complexities among reported algorithms that can detect 

warping for FFF 3D printing. 

Algorithm #1 #2 #3 #4 #5 

Source 
This paper 

Saluja, Xie, and 

Fayazbakhsh 

(2020) 

Khan et al. 

(2021) 
Yi et al. (2017) 

Petsiuk and 

Pearce (2020) 

Type 
CNN CNN CNN 

Geometric 

approximation 

Geometric 

approximation 

Time 

complexity 
O(46n2) O(288n2) O(3480n2) O(n2) O(n2) 

 

4. Conclusions 

This study led to the design of a closed-loop in-process system for warping monitoring for FFF 3D printing. 

The system comprises a 3D printer, camera, and microcomputer operating in coordination. A feature 

extraction functionality was created to autonomously locate and extract the corner from the original image, 

which mitigated the environmental noise and reduced computational complexity. An automated correlation 

process was designed to perform map matching between the build platform and the image coordinate 

systems to aid high-precision feature extraction. Bayesian optimization was adopted to automatedly select 

the optimized hyperparameters for the CNN classification model based on the training and testing datasets. 

Finally, the OctoPrint plugins served as an interface between the software and hardware, performing real-

time G-code analysis and information transmission. A total of 16 specimens were printed, and 128 images 



were captured, cropped, and analyzed. All the cropped images contained the specimen corners, and 127 

images were correctly classified, indicating that the system is 99.2% accurate. 

The dataset for this study was relatively small and allowed the models to be trained in less than 15 minutes. 

However, in an industrial environment, datasets are complex and require a much longer training time for 

an automated approach. The increasing availability of hardware accelerators means the computational costs 

have become inconsequential compared to the time saved and the accuracy achieved using black-box 

optimization algorithms. The automated feature extraction methodology can be flexibly applied to a system 

that operates at different camera angles. Thus, the system potentially allows cameras to be deployed around 

the build platform to inspect more types of defects. Moreover, this technique is not restricted to 3D printing 

and can monitor other manufacturing techniques, e.g., CNC machining.  

 

In the future, efforts will be made to address random variations in images' brightness or color information 

(image noise). In addition, the deployment of the defect detection architecture in a real production system 

will be investigated. The focus will be on implementing software development and information technology 

operations (DevOps) principles to ML, especially on the continuous delivery and automation of ML 

pipelines. At a higher level, to improve the current system's scalability and account for incoming data 

streams, the system would be hosted on a cloud-based service accessible via application programming 

interface (API) requests. Additionally, workflows will be set up to identify any bottlenecks or root causes 

to improve the generalizability and performance of the model. 
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