An assessment of public indoor swimming pool air quality from the perspective of an employee

Shivangi Patel and Chun-Yip Hon*

*School of Occupational and Public Health, Ryerson University, 350 Victoria St., POD 249, Toronto, ON

Background

- The Health Protection and Promotion Act Regulation 565 (1990) requires public pool water to be treated with chlorine or a chlorine/bromine compound. When chlorine is added to water, it forms hypochlorous acid (HOCl) and hydrochloric acid (HCl) (Luttrell et al, 2008)
- HCl is known to be a pulmonary irritant thus stimulating receptors and inducing inflammation (Luttrell et al, 2008)
- Chloramines result when HOCl reacts with nitrogen containing compounds (i.e. sweat and urine) in water (Florentin et al, 2011)
- A number of studies have shown a relationship between trichloramine and an increase in the prevalence of irritation and other respiratory symptoms (Massin et al, 1998; Hery et al, 1995; Jacobs et al, 2007)

Objective: This exploratory study was aimed at surveying Class A pools to determine employees perceptions of indoor air quality while concurrently taking quantitative measurements of three common disinfection byproducts

Methodology

- Six indoor pool sites in a municipality in the Greater Toronto Area were surveyed
- At each site, employees over the age of 18 were asked to complete a survey consisting of questions regarding demographic information, their subjective perception of the indoor air quality and related health effects
- Simultaneously, the airborne concentration of chlorine, hydrogen chloride and trichloramine was determined using active air sampling and their related sampling methods (Table 1)
- Two area samples were taken for each chemical at two different locations at each pool site
- Samplers were attached to lifeguard chairs 6 feet above pool deck
- Procedure was repeated at each of the six sites

Table 1. Specificities of sampling method used for each chemical sampled

Chemical	Sampling Method	Media	Flow Rate (L/min)	LOD (μg)
Chlorine	NIOSH 6011	PTFE, 0.5 μm + silver membrane, 22mm, 0.45 μm	1.0	0.6
Hydrogen Chloride	OSHA ID-174-SG	Silica gel	0.5	0.6
Trichloramine	Hery Method (Hery et al, 1995)	Teflon filter, cellulose pad and soaked quartz fibre filter	1.0	122.3

Results

Table 2. Breakdown of demographic data of individuals who took part in the questionnaire (n=26)

Gender		
Male	20	
Female	6	
Age		
18-24	14	
25 or older	11	
No answer	1	
Years working at current location		
Less than 1	4	
1-5 years	17	
6 years or more	5	
Hours worked per week		
Less than 12	11	
12-19	8	
20 or more	7	

Figure 1. Employees responses regarding temperature, air quality and humidity on a day to day basis (n= 26). Each parameter was rated on a scale between 1-5

Figure 2. Average measured concentrations of chlorine, hydrogen chloride and trichloramine across the six pool sites surveyed

Discussion

- Studies have indicated that trichloramine concentrations ranging from 0.1-0.57 mg/m³ have resulted in an increase in respiratory effects (Hery et al, 1995; Jacobs et al, 2007)
- Compared to other studies, the measured airborne concentration of trichloramine obtained in this study is significantly lower
- While there was a substantial amount of airborne chlorine, it does not seem to be a concern to employees
- A limitation exists in the fact that measurements were taken on a single day for a 90 minute time period, because of this, exposure was assumed to be consistent

Recommendations

Moving forward, the following factors should be investigated:

- 1. Generation of a larger sample size Include employees who are under the age of 18
- 2. More sites In the same municipality or in different municipalities to determine if there is consistency in results
- 3. Varying time period Different times of day or different time of the year

Conclusion

- The results show that the control measures currently in place are effective in maintaining airborne disinfection byproducts at a low level
- Also, supports the fact that pool sites are following correct protocol
 when it comes to bather hygiene and site maintenance

References

Hery, M et al. (1995). Ann Occup Hug, 39(4), 427–439.
Jacobs, J. H et al. (2007). Eur Respir J, 29(4), 690–698.
Florentin, A. et al. (2011). Int J Hyg Environ Health, 214(6), 461-469.
Luttrell, W.E., Still, K.R. and Jederburg, W.W. (2008). Toxicology Principles for the Industrial Hygienist. Falls Church, Virginia: American Industrial Hygiene Association Massin, N et al. (1998). Occup Environ Med, 258–263.
Public Pool Regulations, Health Protection and Promotion Act Reg. 565/1990

Acknowledgements

A special thanks the Lifesaving Society and the City of Markham for their support on this project

