# ITM207 Tip Sheet: Midterm Review (includes main calculations)

\*\*For the Midterm, you must review main concepts from Professor's slides and textbook\*\*

By: Priyanshi Patel

**Binary Values and Number System** 

# <u>Numbers</u>

- Natural Numbers: Zero and any number obtained by repeatedly adding one to it
   E.g: 100, 0, 45645, 32
- Negative Numbers: A value less than 0, with a sign

• E.g: -24, -1, -45645, -32

- Integers: A natural number, a negative number
  - E.g: 249, 0, -45645, -32
- Rational Numbers: An integer or the quotient of two integers
  - E.g: -249, -1, 0, 3/7, -2/5

# **Positional Notation**

• Base of a number determines the number of different digit symbols (numerals) and the values of digit positions.

642 in base 10 positional notation is:



### **Bases**

- **Decimal** is base 10 and has 10 digit symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- **Binary** is base 2 and has 2 digit symbols: 0, 1
- **Octal** is base 8 and has 8 digit symbols: 0,1,2,3,4,5,6,7
- Hexadecimal is base 16 and has 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F

cuemath

Hexadecimal to Decimal Conversion Table

| Hexadecimal | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | А  | В  | С  | D  | Е  | F  |
|-------------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|
| Decimal     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

0

For a number to exist in a given base, it can only contain the digits in that base, which range from 0 up to (but not including) the base.

# **Arithmetic in Binary**

Binary Addition

Remember that there are only 2 digit symbols in binary, 0 and 1  $\,$ 

1 + 1 is 0 with a carry



- 0
- Binary Subtraction
  - Simple Subtraction

```
012
02
1010111
<u>- 111011</u>
0011100
```

• Using 2's complement

| 10001100                                          |
|---------------------------------------------------|
| - 00010111 - take bottom number and convert using |
| 2's complement                                    |
| 00010111 (+)                                      |
| 11101000 invert                                   |
| 1 +1                                              |
| simply & lilolool (-)                             |
| 10001100                                          |
| + 11101001                                        |
| 101110101                                         |
| a digits, there is an overflow;                   |
| must only be 8                                    |
| we cross out the extra                            |
| 101110101                                         |
| & OILLOID ] - that's the answer                   |
|                                                   |
| : 10001100 - 00010111 = 01110101                  |

#### **Converting to different bases**

• Octal to Decimal

What is the decimal equivalent of the octal number 642?

 $6 \times 8^2 = 6 \times 64 = 384$ +  $4 \times 8^1 = 4 \times 8 = 32$ +  $2 \times 8^\circ = 2 \times 1 = 2$ = 418 in base 10

### • Hexadecimal to Decimal

What is the decimal equivalent of the hexadecimal nb DEF?

D x  $16^2$  = 13 x 256 = 3328 + E x  $16^1$  = 14 x 16 = 224 + F x 16° = 15 x 1 = 15 = 3567 in base 10

• Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

 $1 \times 2^{6} = 1 \times 64 = 64$ + 1 \times 2^{5} = 1 \times 32 = 32 + 0 \times 2^{4} = 0 \times 16 = 0 + 1 \times 2^{3} = 1 \times 8 = 8 + 1 \times 2^{2} = 1 \times 4 = 4 + 1 \times 2^{1} = 1 \times 2 = 2 + 0 \times 2^{0} = 0 \times 1 = 0 = 110 in base 10

- Binary to Octal
- Mark groups of three (from right)
- Convert each group

10101011 is 253 in base 8

- $\circ\quad$  Use Binary to convert each group
- E.g. the first group is 10
  - $\bullet 1 * 2^1 = 2$
  - **•**  $0 * 2^{\circ} = 0$
  - $\blacksquare \quad \text{Add} = 2$

- Binary to Hexadecimal
- Mark groups of four (from right)
- Convert each group

10101011 <u>1010</u> <u>1011</u> A B

# 10101011 is AB in base 16

- Use Binary to convert each group
- E.g. the first group is 1010
  - $\bullet \quad 1 \quad * \ 2^3 = 8$
  - $\bullet$  0 \* 2<sup>2</sup> = 0
  - $\bullet \quad 1 * 2^1 = 2$
  - $\bullet$  0 \* 2° = 0
  - Add =  $10 \Rightarrow A$

#### • Decimal to Other Bases

- Algorithm for converting number in base 10 to other bases:
- While the quotient is not zero:
  - Divide the decimal number by the new base
  - Make the remainder the next digit to the left in the answer
  - **Replace the original decimal number with the quotient**

| What is 1988 (base                                     | e 10) in l      | base 8?      | What is 3567 (base 10) in base 16?                                      |                                                    |                              |  |  |
|--------------------------------------------------------|-----------------|--------------|-------------------------------------------------------------------------|----------------------------------------------------|------------------------------|--|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 8 31<br>24<br>7 | 83<br>0<br>3 | 222<br>16 3567<br><u>32</u><br>36<br><u>32</u><br>47<br><u>32</u><br>15 | 13<br>16 222<br><u>16</u><br>62<br><u>48</u><br>14 | 0<br>16 13<br><u>0</u><br>13 |  |  |
| Answer is                                              | 3704            |              |                                                                         | DEF                                                |                              |  |  |

# **Data Representation**

- Representing Negative Values
  - Ten's complement representation we can use this formula to compute the representation of a negative number
    - Negative(I) =  $10^k I$ , where k is the number of digits
  - For example, -3 is negative(3), so using two digits, its representation is
    - Negative(3) = 100 3 = 97

- Two's Complement
  - Converts a positive integer into a negative integer
  - Steps:
    - 1. Invert (change all 1's to 0's and all 0's to 1's)
      - 2. Add 1



- Representing Real Numbers
  - Floating Point
    - A real value in base 10 can be defined by the following formula where the mantissa is an integer:
      - sign \* mantissa \* 10<sup>exp</sup>
    - This representation is called floating point because the radix point "floats"
    - E.g 43. 254
    - $= * 4254 * 10^3$
  - Scientific Notation
    - A form of floating-point representation in which the decimal point is kept to the right of the leftmost digit
      - E.g 12001.32708 is 1.200132708E+4 in scientific notation
         (E+4 is how computers display x10<sup>4</sup>)
  - Converting a Real Number to Binary
    - How to convert decimal fractions:
    - multiply by 2 and save the whole number part of the answer
    - Example 1: Convert the decimal number: 0.625 to binary
      - $0.625 * 2 = 1.25 \Rightarrow$  Here we saved 1
      - Now disregard the whole number part of the previous result and multiply by 2 again. Continue this process until you get a zero in the decimal part:

- $0.25 * 2 = 0.50 \Rightarrow$  Here we saved 0
- 0.50 \* 2= 1.00 ⇒ Here we saved 1 and the calculation stops here since the decimal part is zero
- Example 2: Convert the decimal number: 5.425 to binary, keeping 4 decimal places
  - 5 in Binary is: 101
  - To get the binary for 0.425 do the following:
    - $\circ$  0.425 \* 2 = 0.85
    - $\circ$  0.85 \* 2 = 1.70
    - $\circ$  0.70 \* 2 = 1.4
    - $\circ$  0.4 \* 2 = 0.8
    - So, 0.425 in Binary is .0110 (only need 4 decimal places)
  - So, 5.425 in Binary is: 101.0110

# Text Compression

- Key Word Encoding
  - Replace frequently used patterns of text with a single special character
     Example

| WORD  | SYMBOL |
|-------|--------|
| as    | ^      |
| the   | ~      |
| and   | +      |
| that  | \$     |
| must  | &      |
| well  | %      |
| these | #      |

- **Original:** that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness.
- **Compressed:** \$ ~y are endowed by ~ir Creator with certain unalienable Rights, \$ among # are Life, Liberty + ~ pursuit of Happiness.
- Compression ratio: compressed # of characters / original # of characters ⇒ 117/136 = 0.86

# • Run Length Encoding

- Replace a repeated sequence
  - with a flag
  - the repeated value
  - the number of repetitions
  - Example: nnnnn  $\Rightarrow$  \*n5
    - \* is the flag
    - n is the repeated value
    - 5 is the number of times n is repeated
- **Rule**  $\rightarrow$  only compress repeated values > 3
  - Example:
    - Original: aaabbhhhhhcd
    - **Compressed:** aaabb\*h5cd
    - Do not compress a,b, c and d as they are not greater than 3

• **Compression Ratio** = compressed # of characters / original # of characters  $\Rightarrow$  10/12 = 0.833

## • Huffman Encoding

- Huffman encoding is an example of prefix coding:
  - no character's bit string is the prefix of any other character's bit string
  - To decode:
    - Look for match left to right, bit by bit
    - Record letter when a match is found
    - Begin where you left off, going left to right

## Example

• ballboard = 101000100100101010001111011

## • To find Compression Ratio

- First make groups of 8 to find how many bytes the compressed form uses
  - **10100010**
  - **01001010**
  - **11000111**
  - 1011xxxx
- So, the compressed form of ballboard uses 4 bytes

# • Using ASCII

- Each character represents 1 byte
- Original form of ballboard uses 9 bytes
- **Compression ratio:** 4/9 = 0.44
- Using Unicode
  - Each Character represents 2 bytes
  - Orignal form of billboard uses 18 bytes
  - **Compression Ratio:** 4/18 = 0.22

# **Boolean Logic and Computing Fundamentals**

• **Only outputs**  $\rightarrow 0 = \text{low voltage}, 1 = \text{high}$ 

#### **NOT Gate**

A NOT gate accepts one input signal (0 or 1) and returns the complementary (opposite) signal as output



| Huffman Code | Character |
|--------------|-----------|
| 00           | А         |
| 01           | E         |
| 100          | L         |
| 110          | 0         |
| 111          | R         |
| 1010         | В         |
| 1011         | D         |

## **AND Gate**

An AND gate accepts two input signals If both are 1, the output is 1; otherwise, the output is 0



#### **OR Gate**

An OR gate accepts two input signals. If both are 0, the output is 0; otherwise,

the output is 1



### **XOR Gate**

An XOR gate accepts two input signals. If both are the same, the output is 0; otherwise, the output is 1



Note the difference between the XOR gate and the OR gate; they differ only in one input situation

When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0 •

XOR is called the exclusive OR because its output is 1 if (and only if):

- Either one input or the other is 1 •
- Excluding the case that they both are •

## NAND Gate

The NAND ("NOT of AND") gate accepts two input signals If both are 1, the output is 0; otherwise,

the output is 1



### NOR Gate

The NOR ("NOT of OR") gate accepts two inputs.

If both are 0, the output is 1; otherwise,

the output is 0



### **Gates with Multiple Inputs**

Some gates can be generalized to accept three or more input values

A three-input AND gate, for example, produces an output of 1 only if all input values are 1



### **Constructing Gates**

0

- Transistor: device that acts either as a wire that conducts electricity or as a resistor that blocks the flow of electricity, depending on the voltage level of an input signal
- It is made of a semiconductor material, which is neither a particularly good conductor of electricity nor a particularly good insulator



FIGURE 4.8 The connections of

<u>a transistor</u> made up of 3 terminals: a source, a base and an emitter



- O FIGURE 4.9 Constructing gates using transistors
- Not Gate  $\rightarrow$  one transistor
- **Nand Gate**  $\rightarrow$  two transistors
- Nor Gate  $\rightarrow$  two transistors
- AND gates are more complicated to construct than NAND Gates ⇒ three transistors
   two for NAND and one for the NOT

#### **Properties of Boolean Algebra**

| PROPERTY        | AND              | OR                         |
|-----------------|------------------|----------------------------|
| Commutative     | AB = BA          | A + B = B + A              |
| Associative     | (AB)C = A(BC)    | (A + B) + C = A + (B + C)  |
| Distributive    | A(B+C)=(AB)+(AC) | A + (BC) = (A + B) (A + C) |
| Identity        | A1 = A           | A + 0 = A                  |
| Complement      | A(A') = 0        | A + (A') = 1               |
| De Morgan's law | (AB)' = A' OR B' | (A + B)' = A'B'            |