
ITM207 Tip Sheet: Midterm Review (includes main calculations)
For the Midterm, you must review main concepts from Professor’s slides and textbook

By: Priyanshi Patel
Binary Values and Number System

Numbers

● Natural Numbers: Zero and any number obtained by repeatedly adding one to it
○ E.g: 100, 0, 45645, 32

● Negative Numbers: A value less than 0, with a – sign
○ E.g: –24, –1, –45645, –32

● Integers: A natural number, a negative number
○ E.g: 249, 0, –45645, –32

● Rational Numbers: An integer or the quotient of two integers
○ E.g: –249, –1, 0, 3/7, –2/5

Positional Notation

● Base of a number determines the number of different digit symbols (numerals) and the
values of digit positions.

Bases

● Decimal is base 10 and has 10 digit symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
● Binary is base 2 and has 2 digit symbols: 0, 1
● Octal is base 8 and has 8 digit symbols: 0,1,2,3,4,5,6,7
● Hexadecimal is base 16 and has 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F

○
For a number to exist in a given base, it can only contain the digits in that base, which range from 0
up to (but not including) the base.

Arithmetic in Binary

● Binary Addition

○
● Binary Subtraction

○ Simple Subtraction

■
○ Using 2’s complement

■

Converting to different bases

● Octal to Decimal

● Hexadecimal to Decimal

● Binary to Decimal

● Binary to Octal

○ Use Binary to convert each group
○ E.g. the first group is 10

■ 1 * 2¹ = 2
■ 0 * 2⁰ = 0
■ Add = 2

● Binary to Hexadecimal

○ Use Binary to convert each group
○ E.g. the first group is 1010

■ 1 * 2³ = 8
■ 0 * 2² = 0
■ 1 * 2¹ = 2
■ 0 * 2⁰ = 0
■ Add = 10 ⇒ A

● Decimal to Other Bases
○ Algorithm for converting number in base 10 to other bases:
○ While the quotient is not zero:

■ Divide the decimal number by the new base
■ Make the remainder the next digit to the left in the answer
■ Replace the original decimal number with the quotient

Data Representation

● Representing Negative Values
○ Ten’s complement representation we can use this formula to compute the

representation of a negative number

■
○ For example, –3 is negative(3), so using two digits, its representation is

■ Negative(3) = 100 – 3 = 97

○ Two’s Complement
■ Converts a positive integer into a negative integer
■ Steps:

● 1. Invert (change all 1’s to 0’s and all 0’s to 1’s)
● 2. Add 1

■
● Representing Real Numbers

○ Floating Point
■ A real value in base 10 can be defined by the following formula where

the mantissa is an integer:

■
■ This representation is called floating point because the radix point

“floats”
■ E.g - 43. 254
■ = - * 4254 * 10³

○ Scientific Notation
■ A form of floating-point representation in which the decimal point is

kept to the right of the leftmost digit
● E.g 12001.32708 is 1.200132708E+4 in scientific notation

○ (E+4 is how computers display x10⁴)

○ Converting a Real Number to Binary
■ How to convert decimal fractions:
■ multiply by 2 and save the whole number part of the answer
■ Example 1: Convert the decimal number: 0.625 to binary

● 0.625 * 2 = 1.25 ⇒ Here we saved 1
● Now disregard the whole number part of the previous result

and multiply by 2 again. Continue this process until you get a
zero in the decimal part:

● 0.25 * 2 = 0.50 ⇒ Here we saved 0
● 0.50 * 2= 1.00 ⇒ Here we saved 1 and the calculation stops

here since the decimal part is zero
■ Example 2: Convert the decimal number: 5.425 to binary, keeping 4

decimal places
● 5 in Binary is: 101
● To get the binary for 0.425 do the following:

○ 0.425 * 2 = 0.85
○ 0.85 * 2 = 1.70
○ 0.70 * 2 = 1.4
○ 0.4 * 2 = 0.8
○ So, 0.425 in Binary is .0110 (only need 4 decimal places)

● So, 5.425 in Binary is: 101.0110
● Text Compression

○ Key Word Encoding
■ Replace frequently used patterns of text with a single special character

Example
● Original: that they are endowed by their Creator with certain

unalienable Rights, that among these are Life, Liberty and the
pursuit of Happiness.

● Compressed: $ ~y are endowed by ~ir Creator with certain
unalienable Rights, $ among # are Life, Liberty + ~ pursuit of
Happiness.

● Compression ratio: compressed # of characters / original # of
characters ⇒ 117/136 = 0.86

○ Run Length Encoding
■ Replace a repeated sequence

● with a flag
● the repeated value
● the number of repetitions

■ Example: nnnnn ⇒ *n5
● * is the flag
● n is the repeated value
● 5 is the number of times n is repeated

■ Rule → only compress repeated values > 3
● Example:

○ Original: aaabbhhhhhcd
○ Compressed: aaabb*h5cd
○ Do not compress a,b, c and d as they are not greater than 3

○ Compression Ratio = compressed # of characters / original
of characters ⇒ 10/12 = 0.833

○ Huffman Encoding
■ Huffman encoding is an example of prefix coding:

● no character's bit string is the prefix of any other character's bit
string

● To decode:
○ Look for match left to right, bit by bit
○ Record letter when a match is found
○ Begin where you left off, going left to right

■ Example
● ballboard = 1010001001001010110001111011
● To find Compression Ratio

○ First make groups of 8 to find how many bytes the
compressed form uses

■ 10100010
■ 01001010
■ 11000111
■ 1011xxxx

○ So, the compressed form of ballboard uses 4 bytes
○ Using ASCII

■ Each character represents 1 byte
■ Original form of ballboard uses 9 bytes
■ Compression ratio: 4/9 = 0.44

○ Using Unicode
■ Each Character represents 2 bytes
■ Orignal form of billboard uses 18 bytes
■ Compression Ratio: 4/18 = 0.22

Boolean Logic and Computing Fundamentals

● Only outputs → 0 = low voltage, 1 = high

NOT Gate
A NOT gate accepts one input signal (0 or 1) and returns the complementary (opposite) signal as output

AND Gate
An AND gate accepts two input signals
If both are 1, the output is 1; otherwise,
the output is 0

OR Gate
An OR gate accepts two input signals.
If both are 0, the output is 0; otherwise,
the output is 1

XOR Gate
An XOR gate accepts two input signals. If both are the same, the output is 0; otherwise,
the output is 1

Note the difference between the XOR gate and the OR gate; they differ only in one input situation

● When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR is called the exclusive OR because its output is 1 if (and only if):
● Either one input or the other is 1
● Excluding the case that they both are

NAND Gate
The NAND (“NOT of AND”) gate accepts two input signals
If both are 1, the output is 0; otherwise,
the output is 1

NOR Gate
The NOR (“NOT of OR”) gate accepts two inputs.
If both are 0, the output is 1; otherwise,
the output is 0

Gates with Multiple Inputs
Some gates can be generalized to accept three or more input values
A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Constructing Gates
● Transistor: device that acts either as a wire that conducts electricity or as a resistor that blocks the

flow of electricity, depending on the voltage level of an input signal
● It is made of a semiconductor material, which is neither a particularly good conductor of

electricity nor a particularly good insulator

○ made up of 3 terminals: a source, a base and an emitter

○
○ Not Gate → one transistor
○ Nand Gate → two transistors
○ Nor Gate → two transistors

● AND gates are more complicated to construct than NAND Gates ⇒ three transistors
○ two for NAND and one for the NOT

Properties of Boolean Algebra

