ITM207 Tip Sheet: Midterm Review (includes main calculations)

For the Midterm, you must review main concepts from Professor's slides and textbook By: Priyanshi Patel

Binary Values and Number System

Numbers

- Natural Numbers: Zero and any number obtained by repeatedly adding one to it
- E.g: $100,0,45645,32$
- Negative Numbers: A value less than 0 , with a - sign
- E.g: $-24,-1,-45645,-32$
- Integers: A natural number, a negative number
- E.g: $249,0,-45645,-32$
- Rational Numbers: An integer or the quotient of two integers
- E.g: $-249,-1,0,3 / 7,-2 / 5$

Positional Notation

- Base of a number determines the number of different digit symbols (numerals) and the values of digit positions.

642 in base 10 positional notation is:

Bases

- Decimal is base 10 and has 10 digit symbols: $0,1,2,3,4,5,6,7,8,9$
- Binary is base 2 and has 2 digit symbols: 0,1
- Octal is base 8 and has 8 digit symbols: $0,1,2,3,4,5,6,7$
- Hexadecimal is base 16 and has 16 digits: $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$, and F

Hexadecimal to Decimal Conversion Table

Hexadecimal	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Decimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

○
For a number to exist in a given base, it can only contain the digits in that base, which range from 0 up to (but not including) the base.

Arithmetic in Binary

- Binary Addition

Remember that there are only 2 digit symbols in binary, 0 and 1
$1+1$ is 0 with a carry

$$
\begin{array}{r}
+011111 \\
1010111 \\
+1001011 \\
\hline
\end{array}
$$

10100010
\circ

- Binary Subtraction
- Simple Subtraction

012 02
1010111
10111011
$-\quad 1111100$

- Using 2's complement

$$
\begin{gathered}
10001100 \\
00010111
\end{gathered} \begin{gathered}
\text { take bottom number and conwest using } \\
\text { 2's complement } \\
00010111 \quad(+)
\end{gathered}
$$

$$
11101000 \text { invert }
$$

10001100
$+11101001$
$\underbrace{101110101}_{1}$
9 digits, there is an overflow, must only be 8
we cross out the extra
Yolllolol
i ollloiol] that's the answer
$\therefore 10001100-00010111=01110101$

Converting to different bases

- Octal to Decimal

What is the decimal equivalent of the octal number 642?

$$
\begin{aligned}
& 6 \times 8^{2}=6 \times 64=384 \\
& +4 \times 8^{1}=4 \times 8=32 \\
& +2 \times 8^{\circ}=2 \times 1=2 \\
& \text { = } 418 \text { in base } 10
\end{aligned}
$$

- Hexadecimal to Decimal

What is the decimal equivalent of the hexadecimal nb DEF?

$$
\begin{aligned}
D \times 16^{2}=13 \times 256 & =3328 \\
+E \times 16^{1}=14 \times 16 & =224 \\
+F \times 16^{\circ}=15 \times 1 & =15 \\
& =3567 \text { in base } 10
\end{aligned}
$$

- Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

$$
\begin{aligned}
& 1 \times 2^{6}=1 \times 64=64 \\
&+1 \times 2^{5}=1 \times 32=32 \\
&+0 \times 2^{4}=0 \times 16=0 \\
&+1 \times 2^{3}=1 \times 8=8 \\
&+1 \times 2^{2}=1 \times 4=4 \\
&+1 \times 2^{1}=1 \times 2=2 \\
&+0 \times 2^{\circ}=0 \times 1
\end{aligned}=0
$$

- Binary to Octal
- Mark groups of three (from right)
- Convert each group

$$
10101011 \quad \frac{10}{2} \frac{101}{5} \frac{011}{3}
$$

10101011 is 253 in base 8

- Use Binary to convert each group
- E.g. the first group is 10
- $1 * 2^{1}=2$
- $0 * 2^{0}=0$
- Add $=2$
- Binary to Hexadecimal
- Mark groups of four (from right)
- Convert each group
$10101011 \quad \frac{1010}{A} \frac{1011}{B}$

10101011 is $A B$ in base 16

- Use Binary to convert each group
- E.g. the first group is 1010
- $1 * 2^{3}=8$
- $0 * 2^{2}=0$
- $1 * 2^{1}=2$
- $0 * 2^{0}=0$
- Add $=10 \Rightarrow A$
- Decimal to Other Bases
- Algorithm for converting number in base $\mathbf{1 0}$ to other bases:
- While the quotient is not zero:
- Divide the decimal number by the new base
- Make the remainder the next digit to the left in the answer
- Replace the original decimal number with the quotient

What is 1988 (base 10) in base 8?

8	$\frac{248}{1988}$	8	$\frac{31}{248}$	8
$\frac{3}{31}$	8	8		
$\frac{16}{38}$	$\frac{24}{08}$	$\frac{24}{7}$		$\frac{0}{3}$
$\frac{32}{68}$	$\frac{8}{0}$			
$\frac{64}{4}$				

Answer is : 3704

What is 3567 (base 10) in base $16 ?$

222	13	0
$1 6 \longdiv { 3 5 6 7 }$	16222	1613
32	16	$\underline{0}$
36	62	13
32	48	
47	14	
32		
15		
D E F		

Data Representation

- Representing Negative Values
- Ten's complement representation we can use this formula to compute the representation of a negative number

Negative $(I)=10^{k}-I$, where k is the number of digits

- For example, $\mathbf{- 3}$ is negative(3), so using two digits, its representation is
- Negative (3) $=100-3=97$
- Two's Complement
- Converts a positive integer into a negative integer

■ Steps:

- 1. Invert (change all 1's to 0's and all 0's to 1 's)
- 2. Add 1

2's complement

```
        00000010 (+2)
    +11111101 Step 1. Invert
    111 111:10
```

```
\therefore the 2's complement of (t)2 is 11111110
```

\therefore the 2's complement of (t)2 is 11111110
\&
\&
a.k.a.00000010

```
                        a.k.a.00000010
```

- Representing Real Numbers
- Floating Point
- A real value in base 10 can be defined by the following formula where the mantissa is an integer:

```
sign * mantissa * 10 exp
```

- This representation is called floating point because the radix point "floats"
■ E.g - 43. 254
■ $\quad=$ - * $4254 * 10^{3}$

- Scientific Notation

- A form of floating-point representation in which the decimal point is kept to the right of the leftmost digit
- E.g $\mathbf{1 2 0 0 1 . 3 2 7 0 8}$ is $\mathbf{1 . 2 0 0 1 3 2 7 0 8 E}+4$ in scientific notation
- $\left(E+4\right.$ is how computers display $\left.\mathbf{x 1 0} 0^{4}\right)$
- Converting a Real Number to Binary
- How to convert decimal fractions:
- multiply by 2 and save the whole number part of the answer
- Example 1: Convert the decimal number: 0.625 to binary
- $0.625 * 2=1.25 \Rightarrow$ Here we saved 1
- Now disregard the whole number part of the previous result and multiply by 2 again. Continue this process until you get a zero in the decimal part:
- $0.25 * 2=0.50 \Rightarrow$ Here we saved 0
- $0.50 * 2=1.00 \Rightarrow$ Here we saved 1 and the calculation stops here since the decimal part is zero
- Example 2: Convert the decimal number: 5.425 to binary, keeping 4 decimal places
- 5 in Binary is: 101
- To get the binary for $\mathbf{0 . 4 2 5}$ do the following:
- $0.425 * 2=0.85$

○ $0.85 * 2=1.70$
○ $0.70 * 2=1.4$

- $0.4 * 2=0.8$
- So, $\mathbf{0 . 4 2 5}$ in Binary is $\mathbf{. 0 1 1 0}$ (only need $\mathbf{4}$ decimal places)
- So, $\mathbf{5 . 4 2 5}$ in Binary is: 101.0110
- Text Compression
- Key Word Encoding
- Replace frequently used patterns of text with a single special character

Example

WORD	SYMBOL
as	\sim
the	\sim
and	$\$$
that	$\&$
must	$\%$
well	$\#$
these	

- Original: that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness.
- Compressed: $\$ \sim y$ are endowed by \sim ir Creator with certain unalienable Rights, \$ among \# are Life, Liberty $+\sim$ pursuit of Happiness.
- Compression ratio: compressed \# of characters / original \# of characters $\Rightarrow 117 / 136=0.86$
- Run Length Encoding
- Replace a repeated sequence
- with a flag
- the repeated value
- the number of repetitions
- Example: $n n n n n \Rightarrow * n 5$
- * is the flag
- n is the repeated value
- 5 is the number of times n is repeated
- Rule \rightarrow only compress repeated values >3
- Example:
- Original: aaabbhhhhhcd
- Compressed: aaabb*h5cd
- Do not compress a,b, c and d as they are not greater than 3
- Compression Ratio = compressed \# of characters / original $\#$ of characters $\Rightarrow 10 / 12=0.833$

	Huffma
	Character
Huffiman Code	
00	A
01	E
100	L
110	R
111	B
1010	D
1011	

AND Gate

An AND gate accepts two input signals If both are 1 , the output is 1 ; otherwise, the output is 0

Boolean Expression	Logic Diagram Symbol	Truth Table		
X = A • B	A	\mathbf{X}	\mathbf{A}	\mathbf{B}
0	\mathbf{B}	0	0	
0	1	0		
1	0	0		
1	1	1		

OR Gate

An OR gate accepts two input signals.
If both are 0 , the output is 0 ; otherwise,
the output is 1

Boolean Expression	Logic Diagram Symbol	Truth Table		
$=\mathrm{A}+\mathrm{B}$	A	\mathbf{X}	\mathbf{A}	\mathbf{B}

XOR Gate

An XOR gate accepts two input signals. If both are the same, the output is 0 ; otherwise, the output is 1

Boolean Expression$X=A \oplus B$	Logic Diagram Symbol		th T	
		A	B	X
		0	0	0
		0	1	1
		1	0	1
		1	1	0

Note the difference between the XOR gate and the OR gate; they differ only in one input situation

- When both input signals are 1 , the OR gate produces a 1 and the XOR produces a 0

XOR is called the exclusive OR because its output is 1 if (and only if):

- Either one input or the other is 1
- Excluding the case that they both are

NAND Gate

The NAND ("NOT of AND") gate accepts two input signals If both are 1 , the output is 0 ; otherwise,
the output is 1

Boolean Expression	Logic Diagram Symbol	Truth Table		
$X=(A \cdot B)^{\prime}$		A	B	X
		0	0	1
		0	1	1
		1	0	1
		1	1	0

NOR Gate

The NOR ("NOT of OR") gate accepts two inputs.
If both are 0 , the output is 1 ; otherwise,
the output is 0

Gates with Multiple Inputs

Some gates can be generalized to accept three or more input values
A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Boolean Expression$\mathrm{X}=\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}$	Logic Diagram Symbol	Truth Table			
		A	B	C	X
		0	0	0	0
		0	0	1	0
		0	1	0	0
		0	1	1	0
		1	0	0	0
		1	0	1	0
		1	1	0	0
		1	1	1	1

Constructing Gates

- Transistor: device that acts either as a wire that conducts electricity or as a resistor that blocks the flow of electricity, depending on the voltage level of an input signal
- It is made of a semiconductor material, which is neither a particularly good conductor of electricity nor a particularly good insulator

FIGURE 4.8 The connections of
o \qquad made up of 3 terminals: a source, a base and an emitter

NOT gate	NAND gate	NOR gate
	Source	Source
Ground		

FIGURE 4.9 Constructing gates using transistors

- Not Gate \rightarrow one transistor
- Nand Gate \rightarrow two transistors
- Nor Gate \rightarrow two transistors
- AND gates are more complicated to construct than NAND Gates \Rightarrow three transistors
- two for NAND and one for the NOT

Properties of Boolean Algebra

PROPERTY	AND	OR
Commutative	$A B=B A$	$A+B=B+A$
Associative	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Distributive	$A(B+C)=(A B)+(A C)$	$A+(B C)=(A+B)(A+C)$
Identity	$A 1=A$	$A+0=A$
Complement	$A\left(A^{\prime}\right)=0$	$A+\left(A^{\prime}\right)=1$
De Morgan's law	$(A B)^{\prime}=A^{\prime}$ OR B^{\prime}	$(A+B)^{\prime}=A^{\prime} B^{\prime}$

