Time Value of Money (Chapter 3 \& 4) Tip Sheet

Prepared by: Kourosh Jam (Feb 2023)

Present Value of Cash Flow

PV of Cash Flow: $\mathrm{PV}=\frac{F V}{(1+r)^{n}}$
FV = Future Value
PV = Present Value
$\mathbf{n}=$ Amount of Periods
$\mathbf{r}=$ Interest Rate
Tip: Use Financial Calculator Compound Interest Function

Present Value of Cash Flow Stream

Characteristic: Payments can be different values each year
Characteristic: Payments do not go on forever
Characteristic: Use Financial Calculator Cash Flow Function

PV Cash Flow Stream: NPV $=\mathrm{PV}+\frac{C_{1}}{(1+r)}+\frac{C_{2}}{(1+r)^{2}}+.+\frac{C_{n}}{(1+r)^{n}}$ PV = Present Value
$C_{1}=$ Cash Flow in Year 1
$C_{2}=$ Cash Flow in Year 2
$C_{n}=$ Cash Flow in Year n
$\mathbf{n}=$ Amount of Periods
$\mathbf{r}=$ Interest Rate
Tip: When inputting values into Cash Flow Section on
Financial Calculator: Sub $1=$ Year 0, Sub $2=$ Year 1, Sub 3 = Year 2, Sub 4 = Year 3, Sub 5 = Year 4, Sub $6=$ Year 5

Annuity (Present and Future Value)

Characteristic: Payments same value each year (Constant)
Characteristic: Payments do not go on forever
Characteristic: Use Financial Calculator Compound Interest Function

Present Value of Annuity: $\mathrm{PV}=\mathrm{C} \times \frac{1}{r}\left(1-\frac{1}{(1+r)^{n}}\right)$
PV = Present Value
C = Constant Cash Flow
n = Amount of Periods
$\mathbf{r}=$ Interest Rate
Future Value of Annuity: $\mathrm{FV}=\mathrm{C} \times \frac{1}{r}\left[(1+r)^{n}-1\right]$
FV = Future Value
C = Constant Cash Flow
$\mathbf{n}=$ Amount of Periods
$\mathbf{r}=$ Interest Rate
Tip: If you are calculating for PV in Financial Calculator, Input "PMT" as a Positive

Tip: If you are calculating for FV in Financial Calculator, Input "PMT" as a Negative

Future Value of Cash Flow

FV of Cash Flow: FV = PV $\times(1+r)^{n}$
FV = Future Value
PV = Present Value
n = Amount of Periods
$\mathbf{r}=$ Interest Rate

Tip: Use Financial Calculator Compound Interest Function
Tip: Input "PV" as a negative, so FV is Positive

Present Value Perpetuity (Normal \& Growing)

Characteristic: Payments same value each year (Constant) Characteristic: Payments go on forever
Characteristic: Use Perpetuity Formula
PV of Perpetuity: $\mathrm{PV}=\frac{c}{r}$
C = Constant Cash Flow
r = Interest Rate
PV of Growing Perpetuity: $\mathrm{PV}=\frac{C}{r-g}$
C = Constant Cash Flow
$\mathbf{r}=$ Interest Rate
$\mathbf{g}=$ Growth Rate
Tip: If you have no Growth use PV of Perpetuity Formula
Tip: If you have Growth use PV Growing Perpetuity Formula

Growing Annuity (Present and Future Value)

Characteristic: Payments same value each year (Constant)
Characteristic: Payments do not go on forever
Characteristic: Use Growing Annuity Formula
PV of Growing Annuity: $\mathrm{PV}=\mathrm{C} \times \frac{1}{r-g}\left(1-\left(\frac{1+g}{1+r}\right)^{n}\right)$
C = Constant Cash Flow
$\mathbf{n}=$ Amount of Periods
$\mathbf{r}=$ Interest Rate
$\mathbf{g}=$ Growth Rate
FV of Growing Annuity: FV $=\mathrm{C} \times \frac{1}{r-g}\left[(1+\mathrm{r})^{n}-(1+g)^{n}\right]$

$$
\begin{aligned}
& \mathbf{C}=\text { Constant Cash Flow } \\
& \mathbf{n}=\text { Amount of Periods } \\
& \mathbf{r}=\text { Interest Rate } \\
& \mathbf{g}=\text { Growth Rate }
\end{aligned}
$$

Tip: To Calculate PV of Growing Annuity, do " $\mathrm{C} \times \frac{1}{r-g}$ " first, do " $\left(1-\left(\frac{1+g}{1+r}\right)^{n}\right)$ " second and lastly multiple together

Tip: To Calculate FV of Growing Annuity, do " $\mathrm{C} \times \frac{1}{r-g}$ " first, do " $\left[(1+r)^{n}-(1+g)^{n}\right]$ " second and last together

