“Our study revealed that this direct biochemical approach provides a smoother road toward clinical application than the use of gene therapy to boost the expression of human polysialyltransferase,” explains Sadia. “For example, polysialic acid induction on neuronal Schwann cells can significantly enhance their migration, axon growth support, and ability to improve functional recovery after spinal cord injury transplantation.”
Given her background in molecular science and cell biology, Sadia’s contribution to the project was to work with a completely new cell line to demonstrate the utility of polysialyltransferase in modifying cell surfaces by flow cytometry.
“I was surprised that with very few modifications, the assay worked,” she says. “I was pleased to have mastered a new method and demonstrated a new result for the study.”
However, there is still some mystery about what exactly is happening at the cellular level. The team’s next step is to understand and characterize how the polysialylation is changing the organization and activity of surface receptors. This research is being developed as a collaboration between the Wakarchuk Lab for GlycoScience at the University of Alberta and the Antonescu Lab for fundamental and cancer cell biology at Ryerson University.
“We know that cell migration is increased when we use bacterial enzymes for rapid and controlled polysialic acid production, but we don’t know exactly how this happens – just that it does. Next, we’ll work with in vitro cell culture, at the single cell level, to answer this question.”